Количество цифр α, β, γ и δ в записях может быть любым. Теперь, используя метод комбинации, можно получить число N, инверсная запись которого и будет обозначать натуральный порядковый номер этого числа в их бесконечном массиве. Например, приведенное выше комплексное число будет иметь в бесконечном массиве всех возможных комплексных чисел натуральный порядковый номер 200 123 021 325. Кстати, можно заметить, что в таком массиве первые 10 чисел (0…9) являются реальными, а число i (комплексная единица) находится на позиции 100 и имеет порядковый номер 10. Также заметим, что при таком подходе
Нетрудно заметить, что нумерация комплексных чисел тождественна нумерации точек квадрата. В этих частных случаях можно легко применить для их нумерации традиционный диагональный процесс Кантора.
Далее, если составить множество строк, подобных выражению (3), в каждой из которых вместо нуля теперь уже будут записываться последовательные натуральные числа, то образуется квадратная таблица, матрица, содержащая
где
Дублирование строк со знаком минус добавит в таблицу и все отрицательные действительные числа. Если теперь записать матрицу координат его точек по выражению (5) для их подсчета диагональным процессом Кантора [3, с.70], то полученная запись будет иметь вид:
Нетрудно заметить, что такая запись содержит весь бесконечный ряд действительных чисел, причем слева (столбцом) и справа от запятой записаны независимые ряды в диапазонах значений от 0 до 1. Понятно, что ряд слева от запятой нужно читать справа налево, добавив в начале него 0 и запятую.
Такая трактовка этих последовательных числовых рядов позволяет присвоить значения их членов координатам точек квадрата, присвоить
Следует признать, что нумерация точек квадрата диагональным процессом менее удобна, чем способ конвертации номеров (6). При конвертации мы легко можем по натуральному порядковому номеру N точки p(
Таким образом, приведенные рассуждения позволяют подвести итог и сделать однозначный вывод:
Задача об "Отеле Гильберта"
Судя по всему, вопросы бесконечных множеств сложны не только для рядовых математиков. Иной раз в слабом их понимании можно заподозрить и величайших специалистов в этой области. Рассмотрим рассказ, который, как считается, предложил Гильберт где-то в третьем десятилетии 20 века [9, 8, 10; 3, с.70-71].
Представим себе гостиницу с бесконечным числом комнат. Комнаты пронумерованы натуральными числами от 1 до ∞. Однажды в гостиницу вошел человек и попросил снять комнату. К сожалению, для нового гостя не нашлось комнаты, так как отель был