Представить себе всю цепочку – от миллионов фоторецепторов в сетчатке, которые реагируют на пятна света, до нейронов, что обнаруживают присутствие Дженнифер Энистон, – это неимоверно сложная задача. Мы только начинаем понимать детальную нейронную организацию зрительного распознавания. Мы знаем, что анатомически нижневисочная кора макаки похожа на пирамиду. Зрительный образ входит в ее основание, после чего множество последовательных связей передают его из первичной зрительной коры, расположенной в задней части головы, к переднему краю височного полюса (рис. 3.5)[223]
. По мере продвижения вперед сложность образов, возбуждающих нейроны, возрастает. На каждом этапе рекомбинация откликов нейронов предыдущего уровня позволяет клеткам следующего уровня реагировать на более крупные фрагменты изображений. Иначе говоря, наша зрительная система идеально приспособлена для повторной сборки гигантского пазла, который создает сетчатка, раскладывая входящие изображения на миллионы пикселей.[224]Рис. 3.5.
Затылочная и нижневисочная области организованы в виде иерархии возрастающей инвариантности и последовательно соединены друг с другом в соответствии с «синаптической пирамидой». На каждой стадии размер рецептивного поля – области сетчатки, на которую реагируют нейроны, – увеличивается в два-три раза. Параллельно возрастает сложность и инвариантность их зрительных предпочтений (по материалам статьи Rolls, 2000).Если бы мы могли подняться по нейронной пирамиде шаг за шагом, синапс за синапсом, и записать активность отдельных нейронов, попавшихся нам по пути от первичной зрительной коры до нижней височной доли, мы бы обнаружили три типа изменений:
• Во-первых, предпочитаемые образы, на которые реагирует нейрон, должны постепенно усложняться. Чтобы вызвать активность в первичной зрительной коре, достаточно маленькой диагональной черты. Для срабатывания нейронов на более высоких уровнях требуются сложные кривые, фигуры, фрагменты объектов и даже целые объекты или лица.
• Во-вторых, нейроны более высоких уровней реагируют на более обширные участки сетчатки. Каждая клетка определяется сквозь призму своего рецептивного поля – то есть места на сетчатке, которое вызывает ее активность. На каждом уровне рецептивные поля расширяются в два-три раза. Это означает, что диаметр ретинального участка, на который должен попасть предпочитаемый объект, чтобы нейрон сработал, тоже увеличивается вдвое или втрое.
• В-третьих, чем выше уровень, тем выше степень инвариантности. Нейроны низших уровней чувствительны к изменениям местоположения, размера и освещения входящей картинки. В областях более высокого уровня нейроны допускают бо́льшие сдвиги и искажения кодируемых объектов.
Функциональная визуализация мозга показывает, что иерархическая организация и возрастающая инвариантность присущи и нашей зрительной коре[225]
. У человека, как и у других приматов, концепция нейронной иерархии обеспечивает простое, хотя и гипотетическое решение проблемы зрительной инвариантности. Чтобы опознать объект, наша кора должна усвоить, как он выглядит с разных сторон. Механизмы научения закрепляют за каждым видом отдельный набор нейронов, после чего соединяют «картинки» так, чтобы они сообща возбуждали те же самые нейроны на следующем уровне иерархической пирамиды. Результат – инвариантная нейронная цепь, допускающая значительные изменения угла обзора. Эта простая идея может быть легко воспроизведена на каждом этапе. Нейроны, отвечающие за распознавание профиля Дженнифер Энистон, собирают информацию от клеток более низких уровней, которые идентифицируют фрагменты ее лица. Эти нейроны способны распознать глаз или нос, потому что предыдущий уровень уже обнаружил паттерны света и тени, совместимые с присутствием этих элементов в конкретном месте на сетчатке.