Читаем Принцесса или тигр? полностью

(1) А — рыцарь, В — шпион, С — плут;

(2) А — плут, В — шпион, С — рыцарь;

(3) А — шпион, В — плут, С — рыцарь.

Далее, пусть С заявил, будто В — шпион. Тогда варианты (1) и (3) исключаются из рассмотрения. (Первый из них — потому что С, будучи плутом, никак не мог заявить, что В — шпион, поскольку В как раз им и является; второй — потому что С, будучи рыцарем, никак не мог утверждать, что В — шпион, поскольку В шпионом не является.) Значит, нам остается лишь вариант (2), причем в этой ситуации судья знал бы, что В — шпион

Пусть теперь С заявил, будто В — рыцарь. Тогда единственно возможным оказывается вариант (1), причем случае судье вновь было бы известно, кто шпион, и он признал бы виновным подсудимого В.

Пусть, наконец, С заявил, будто В — плут. Тогда судья не смог бы определить, какой из вариантов имеет место в действительности — вариант (1) или вариант (3). Поэтому он не смог бы указать, кто же является шпионом — А или В, а значит, и не смог бы признать кого-либо из них виновным. Следовательно, С не мог заявить, что В является плутом. (Конечно, у нас все еще действует предположение, относящееся к случаю 1, — что В утверждал, будто А — рыцарь.)

Итак, если имеет место случай 1, то судья мог признать виновным только подсудимого В.

Случай 2: В утверждал, что А — шпион. Предоставим читателю доказать самому, что в этом случае могут иметь место лишь следующие варианты:

(1) А — рыцарь, В — шпион, С — плут;

(2) А — плут, В — шпион, С — рыцарь;

(3) А — шпион, В — рыцарь, С — плут.

Если бы С заявил, будто В — шпион, тогда нам могут встретиться как вариант (2), так и вариант (3), так что в данной ситуации судья никак не сумел бы найти виновного. Если бы С заявил, будто В — рыцарь, то тогда может выполняться лишь вариант (1), и судья признал бы виновным подсудимого В. Если бы, наконец, С заявил, будто В — плут, тогда вполне могут иметь место как вариант (1), так и вариант (3), и судья опять не смог бы обнаружить виновного. Стало быть, С заявил, что В — рыцарь, а подсудимый В был признан виновным.

Итак, в случае 2 виновным оказывается вновь подсудимый В.

Случай 3: В утверждал, что А — плут. Тут у нас имеется 4 варианта (читатель может убедиться в этом сам):

(1) А — рыцарь, В — шпион, С — плут;

(2) А — плут, В — шпион, С — рыцарь;

(3) А — плут, В — рыцарь, С — шпион;

(4) А — шпион, В — плут, С — рыцарь.

Если бы С заявил, будто В — питон, тогда могут иметь место как вариант (2), так и вариант (3), и судья оказывается не в состоянии определить, кто же из подсудимых виновен. Если бы С заявил, будто В — рыцарь, тогда справедливыми могли бы оказаться как вариант (1), так и вариант (3), и судья вновь не смог бы обвинить кого-либо из. подсудимых в шпионаже. Наконец, если бы С заявил, будто В — плут, тогда могли бы выполняться варианты (1), (3) или (4), причем опять-таки судья не смог бы найти виновного.

Таким образом, мы полностью исключили из рассмотрения случай 3. Кроме того, теперь мы знаем, что в действительности могут иметь место либо случай 1, либо случай 2, причем в обоих этих случаях судья признал бы виновным подсудимого В.

Итак, при выполнении возможности I (если А сообщил, будто С — плут) шпионом должен оказаться обвиняемый В. Следовательно, если бы логику сказали о том, что А сообщил, будто С — плут, то он вполне мог бы решить задачу и установить, что подсудимый В является шпионом.

Возможность II. Предположим теперь, что логику было сказано, что А заявил, будто С — шпион. Покажем, что при этом логик оказался бы не в состоянии решить задачу, поскольку вполне могло случиться, что судья признал бы виновным А, или же могла возникнуть ситуация, когда виновным был бы признан В, причем логик никак не мог бы выяснить, какой из этих двух случаев имел место в действительности.

Для доказательства этого предположим, что А заявил, будто С — шпион. Тогда существует вариант, при котором судья мог бы назвать виновным подсудимого А. В самом деле, допустим, что В утверждал, будто А — рыцарь, а С заявил, будто В — плут. Если А в самом деле является шпионом, то В может быть плутом (который лгал бы, утверждая, что А — рыцарь), а С может быть рыцарем (который говорил бы правду, заявляя, будто В — плут). При этом А (будучи по предположению шпионом) солгал бы, сообщив, будто С — шпион. Итак, вполне допустимо, чтобы А, В и С действительно высказали бы эти три утверждения, а также чтобы А оказался шпионом. Далее, если бы шпионом был В, то А должен был бы оказаться плутом, заявляя, будто С — шпион. Точно также должен был бы оказаться плутом и С, поскольку он заявил, будто В — плут; хотя, конечно же, это невозможно. Наконец, если бы шпионом был С, то тогда А должен был бы оказаться рыцарем, поскольку он говорил правду, утверждая, будто С — шпион. При этом рыцарем должен был бы оказаться и В, поскольку он тоже говорил правду, утверждая, будто А — рыцарь; однако это также невозможно. Значит, А должен быть шпионом (в случае если бы В утверждал, что А — рыцарь, а С заявил бы, будто В — плут).

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии