Читаем Принцесса или тигр? полностью

2. — Это было превосходно, — одобрительно сказал Мак-Каллох, внимательно выслушав пояснения Крейга. — Тогда позволь задать тебе другую задачу. Я называю число симметричным, если оно читается одинаково в ту и другую сторону, то есть если оно равно своему обращению. Так, например, числа вида 58385 или 7447 — симметричны. Числа, не являющиеся симметричными, я называю несимметричными — например, такие, как 46733 или 3251. Очевидно, что существует число, которое порождает обращение самого себя — это число 323; действительно, оно порождает само себя и к тому же симметрично. Для моей первой машины, в которую не было заложено правило 3, не существовало такого несимметричного числа, которое порождало бы свое собственное обращение. Однако в случае использования правила 3 такое число все-таки существует — и на самом деле даже не одно. Можешь ли ты найти такое число?


3. — Кроме того, — сказал Мак-Каллох, — существуют числа, которые порождают ассоциаты своих собственных обращений. Можешь ли ты найти такое число?


— А теперь, — продолжал Мак-Каллох, — сформулируем еще одно новое правило.

Правило 4. Если число X порождает число Y, то число 5X порождает число YY.

При этом напомню, что число YY называется повторением числа Y.

Затем Мак-Каллох предложил Крейгу рассмотреть иве новые задачи.


4. Найти число, которое порождает повторение самого.


5. Найти число, которое порождает обращение повторения самого себя.


6. — Вот странно, — удивился Мак-Каллох, когда Крейг показал ему решение задачи 5. — А у меня получился другой ответ — правда, тоже число, состоящее из семи цифр.

Действительно, существуют два семизначных числа, каждое из которых порождает обращение своего собственного повторения. Можете ли вы найти второе из лих чисел?


7. — Для любого X, — сказал Мак-Каллох, — число 52X

, понятно, порождает повторение числа X. Не мог бы ты найти такое X, для которого число 5X порождало бы повторение самого X?

Крейг некоторое время размышлял, а потом внезапно рассмеялся: настолько очевидным оказалось решение!


8. — А теперь, — сказал Мак-Каллох, — пусть имеется число, которое порождает повторение ассоциата самого себя. Не мог бы ты найти это число?


9. — Кроме того, — продолжал Мак-Каллох, — существует число, которое порождает ассоциат своего собственного повторения. Можешь ли ты его найти?

Операционные числа

— А знаешь, — вдруг сказал Крейг, — я только сейчас сообразил, что все эти задачи могут быть решены, если исходить из некоторого общего принципа. Стоит лишь его понять, как оказывается возможным решать не только те задачи, которые ты мне задавал, но и массу других!

— Например, — продолжал Крейг, — должно существовать число, которое порождает повторение обращения своего собственного ассоциата, или, к примеру, число, которое порождает ассоциат повторения своего собственного обращения, или еще число, которое…

— Поразительно, — прервал его Мак-Каллох. — Я пробовал было отыскать несколько таких чисел, но у меня ничего не вышло. Что же это за числа?

— Ты научишься находить их мгновенно, как толь ко узнаешь, что это за принцип!

— Да что же это за принцип? — взмолился Мак-Каллох.

— И это не все, — продолжал Крейг, которому доставляло явное удовольствие разыгрывать Мак-Каллоха. — Я еще могу найти число X, которое порождает повторение обращения двоимого ассоциата X, или число Y, порождающее обращение двойного ассоциата числа YYYY, или число Z, которое…

— Хватит-хватит! — воскликнул Мак-Каллох. — А почему ты все-таки не хочешь мне сказать, в чем заключается твой принцип, а уж потом перейти к приложениям?

— Ну ладно, — согласился Крейг.

Тут инспектор взял лежавший на столе блокнот, вынул ручку и усадил Мак-Каллоха рядом с собой, с тем чтобы его друг мог видеть, что он пишет.

— Прежде всего, — начал Крейг, — я полагаю, что ты знаком с понятием операции над числами, как, например, операция прибавления единицы к данному числу, или операция умножения числа на 3, или операция возведения данного числа в квадрат, или, что имеет более близкое отношение к твоей машине, операция взятия обращения

заданного числа или операции получения повторения и ассоциата некоторого числа, или же, наконец, более сложные операции, как, например, операция построения обращения повторения ассоциата некоторого числа. При этом буквой F будет обозначаться некоторая произвольная операция, а запись F(X), где X — заданное число (мы будем читать Это выражение как «эф от икс»), будет означать результат выполнения операции F над числом X. Все это как ты прекрасно понимаешь, — вполне обычные математические обозначения. Итак, к примеру, если F есть операция обращения, то число F(X) есть обращение числа X; если же F будет обозначать операцию повторения, а выражение F(X) будет повторением числа X и так далее.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии