Читаем Принцесса или тигр? полностью

— Я приготовил для тебя еще несколько задачек, — сказал Мак-Каллох, — однако сегодня уже поздно. Оставайся-ка ночевать у меня. А завтра мы с тобой поговорим подробнее.

У Крейга как раз было несколько свободных дней, и поэтому он с удовольствием принял приглашение Мак-Каллоха.

Некоторые варианты принципа Крейга

Наутро после плотного завтрака — а хозяин оказался человеком очень гостеприимным — Мак-Каллох предложил Крейгу следующие задачи.


21. Найти число X, которое порождает число 7X7X.


22. Найти число X, которое порождает обращение числа 9X.


23. Найти число X, которое порождает ассоциат числа 89X.


— Очень мило! — воскликнул Крейг, после того как покончил с решением последней задачи. — Ни одну из их задач нельзя решить с помощью того принципа, о котором я тебе рассказывал вчера.

— Вот именно! — рассмеялся Мак-Каллох.

— И все-таки, — возразил Крейг, — решение всех грех задач подчиняется некой общей идее: во-первых, конкретные числа 7, 5 и 89 не играют никакой роли; для любого данного числа А существует определенное число X, которое порождает повторение числа АХ, еще какое-то X порождает обращение АХ; наконец, есть X, порождающее ассоциат числа АХ. Кроме того, существует также некое число X, которое порождает повторение обращения числа АХ или, например, обращение ассоциата АХ. Фактически это означает, что для любого операционного числа M и для любого заданного числа А должно существовать некоторое число X, которое порождает М(АХ), то есть число, полученное в результате применения операции M к числу АХ.


24. Крейг, разумеется, был прав: для любого операционного числа M и для любого заданного числа А должно найтись некоторое число X,

которое порождает число М(АХ). Будем называть это правило вторым принципом Крейга. Как же доказать этот принцип? И как при заданном операционном числе M и заданном А найти в явном виде такое число X, которое порождает М(АХ)?


25. — Мне только что пришел в голову еще один вопрос, — сказал Мак-Каллох. — Пусть для любого числа X величина X обозначает обращение этого X. Можешь ли ты найти такое число X, которое порождает Х67? (Иначе, существует ли такое число X, которое порождает обращение числа X, за которым следует число 67?) В общем виде этот вопрос можно сформулировать так: действительно ли для любого числа А существует некоторое число X, которое порождает ХА?


26. — Мне в голову пришел еще один вопрос, — сказал Мак-Каллох. — Существует ли такое число

X, которое порождает повторение числа Х67? Или, в более общем виде: действительно ли для любого числа А существует такое число X, которое порождает повторение числа ХА? Или, если задать вопрос в еще более общем виде: действительно ли для любого числа А и для любого операционного числа M должно существовать некоторое число X, которое порождает M(ХА)?


Обсуждение. Принцип Крейга справедлив не только для второй машины Мак-Каллоха, но и для первой — а в сущности и для любой машины, в которую заложены правила 1 и 2. Это означает, что, как бы мы ни расширяли первую машину Мак-Каллоха, вводя в нее новые правила, работа результирующего устройства все равно будет подчиняться принципу Крейга (а фактически обоим его принципам).

Первый принцип Крейга связан с одним из знаменитых результатов теории вычислимых функций, известным под названием теоремы о рекурсии (или, как ее иногда называют, теоремы о неподвижной точке). С помощью правил 1 и 2, предложенных Мак-Каллохом, этот результат получается, пожалуй, наиболее простым способом. Кроме того, эти правила обладают еще одним занятным свойством (связанным уже с другим знаменитым результатом теории вычислимых функций, известным под названием теоремы о двойной рекурсии), о котором пойдет речь в следующей главе. Наконец, все эти сведения имеют отношение к теории самовоспроизводящихся машин и теории клонирования.

Решения

1. — С помощью твоей теперешней машины можно получить бесконечное множество чисел, которые порождают сами себя, — сказал Крейг.

— Это верно, — согласился Мак-Каллох. — Но как ты это докажешь?

— Начнем с того, — сказал Крейг, — что будем называть некое число SA числом, если оно обладает тем свойством, что для любых чисел X и Y в случае, если X

порождает Y, число SX порождает ассоциат Y. До того как ты ввел свое новое правило, единственным А-числом у нас было число 3. Однако для твоей нынешней машины существует бесконечное множество А-чисел, причем для любого А-числа S число S2S обязательно должно порождать само себя, поскольку число S2S порождает ассоциат числа S, который и есть S2S.

— А как ты догадался, что существует бесконечное множество А-чисел? — спросил Мак-Каллох.

— Ну, во-первых, — ответил Крейг, — надеюсь, ты не будешь возражать, что при любых числах X и Y, если число X порождает Y, то число 44X будет также порождать Y?

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии