Читаем Проблема символа и реалистическое искусство полностью

Другой весьма важной математической моделью для построения понятия «символ» является извлечение корня

, не выразимое при помощи конечного числа арифметических знаков. Так, например, извлечение квадратного корня из числа 2 или из числа 3 никогда не может прийти к окончательному результату, поскольку квадратный корень из этих чисел, как говорят, «не извлекается». Мы получаем здесь в качестве корня одну целую единицу и еще бесконечное количество десятичных знаков. Сколько бы мы ни вычисляли этих десятичных знаков, мы никогда не получим точного квадратного корня из 2 или из 3. Чем больше мы вычислим этих десятичных знаков, тем наш корень получит более точное значение. Но в окончательном смысле только бесконечное количество десятичных знаков могло бы нам дать точное представление об этом корне. Тем не менее здесь решающую роль играет одно обстоятельство: эти десятичные знаки возникают не как попало, не случайно, не хаотично, но в силу определенного закона и в виде определенной системы. Этот закон и эту систему наши школьники прекрасно знают, когда начинают вычислять квадратный корень из 2 или из 3. Ведь имеется определенное правило для получения любого количества десятичных знаков в данном случае. Значит, и возникновение последних подчинено определенному закону, определенной системе. Бесконечного количества десятичных знаков мы получить не можем. Но все-таки достаточно уже школьной математики, чтобы понять, что же такое этот квадратный корень из 2 или 3. И всякий школьник, прошедший основы математики в средней школе, прекрасно оперирует с этими иррациональными величинами, не хуже, чем с рациональными, поскольку для иррациональных величин существуют свои особые правила. Вот символ и является такого рода заданием
, которое невозможно вычислить точно и осуществить при помощи конечного количества величин. И тем не менее он есть нечто совершенно точное, абсолютно закономерное и в идеальнейшем смысле слова системное.

К несчастью, пошлые предрассудки обыденного мышления заставляют пугаться таких терминов, как «иррациональное число». Тут уж часто оказывается бессильной даже точнейшая математика. Однако сейчас мы покажем, что иррациональность не только есть нечто закономерно мыслимое и системное наряду с рациональными величинами, но что она есть также и нечто вполне видимое, физически видимое, физически осязаемое, хотя, правда, математики об этом не очень любят говорить.

Возьмите геометрическую фигуру – квадрат – и представьте себе, что каждая сторона этого квадрата равняется единице. Тогда опять-таки уже школьник бойко вычислит вам диагональ этого квадрата. Согласно известной теореме, диагональ квадрата со сторонами, равными единице, есть не что иное, как квадратный корень из 2. После этого я вас спрошу: видите ли вы своими глазами эту диагональ или не видите? Если у вас нормальные глаза, то, конечно, вы видите

эту диагональ. А ведь она есть нечто иррациональное. Точно так же если вы имеете круг с определенным радиусом, то уже школьный учебник трактует о том, что такое окружность круга и что такое площадь круга. Окружность круга есть 2πR, где R есть величина радиуса, а π есть особого рода число, тоже не выразимое в конечных арифметических знаках, но по своей структуре гораздо более сложное, чем даже иррациональная величина. Также при помощи конечно измеряемого радиуса можно получить и площадь круга: πR2. И я опять спрошу: видите ли вы своими физическими глазами эту окружность круга и эту площадь круга, образованную при помощи конечного радиуса? Конечно, видите. Но в таком случае вы мне не говорите, что иррациональные или трансцендентные величины не видимы. Они великолепно видимы, как бы тут ни возмущался обывательский рассудок.

Точно так же и символ вполне видим и вполне осязаем, хотя в него входят иррациональные и трансцендентные величины. И поэтому иррациональный и трансцендентный (в математическом смысле) символ не только не мешает реализму отражения объективных вещей в человеческом сознании, не только не мешает образному отображению этих величин в действительности с целью ее закономерного и системного изучения и сознательно-творческого ее переделывания, но это отражение и обратное отображение только и возможно при помощи иррациональных и трансцендентных моментов. Тот довод, что это происходит только в математике, а в действительности ничего подобного нет, явно продиктован последовательным и выраженным субъективизмом. Почему же Леверье вычислил существование Нептуна и появление его в определенный момент времени в определенном месте небесного свода, отнюдь не наблюдая самого Нептуна, а только чисто механически? Значит, и математика вполне реалистична, хотя отражает она не только поверхностные, но и глубинные структуры действительности. В этом смысле нет никакой возможности противопоставлять математическое извлечение «неизвлекаемого корня» предлагаемой здесь нами теории символа.

Перейти на страницу:

Похожие книги

Сочинения
Сочинения

Иммануил Кант – самый влиятельный философ Европы, создатель грандиозной метафизической системы, основоположник немецкой классической философии.Книга содержит три фундаментальные работы Канта, затрагивающие философскую, эстетическую и нравственную проблематику.В «Критике способности суждения» Кант разрабатывает вопросы, посвященные сущности искусства, исследует темы прекрасного и возвышенного, изучает феномен творческой деятельности.«Критика чистого разума» является основополагающей работой Канта, ставшей поворотным событием в истории философской мысли.Труд «Основы метафизики нравственности» включает исследование, посвященное основным вопросам этики.Знакомство с наследием Канта является общеобязательным для людей, осваивающих гуманитарные, обществоведческие и технические специальности.

Иммануил Кант

Философия / Проза / Классическая проза ХIX века / Русская классическая проза / Прочая справочная литература / Образование и наука / Словари и Энциклопедии
Что такое «собственность»?
Что такое «собственность»?

Книга, предлагаемая вниманию читателя, содержит важнейшие работы французского философа, основоположника теории анархизма Пьера Жозефа Прудона (1809–1865): «Что такое собственность? Или Исследование о принципе права и власти» и «Бедность как экономический принцип». В них наиболее полно воплощена идея Прудона об идеальном обществе, основанном на «синтезе общности и собственности», которое он именует обществом свободы. Ее составляющие – равенство (условий) и власть закона (но не власть чьей–либо воли). В книгу вошло также посмертно опубликованное сочинение Прудона «Порнократия, или Женщины в настоящее время» – социологический этюд о роли женщины в современном обществе, ее значении в истории развития человечества. Эти работ Прудона не издавались в нашей стране около ста лет.В качестве приложения в книгу помещены письмо К. Маркса И.Б. Швейцеру «О Прудоне» и очерк о нем известного экономиста, историка и социолога М.И. Туган–Барановского, а также выдержки из сочинений Ш.О. Сен–Бёва «Прудон, его жизнь и переписка» и С. — Р. Тайлландье «Прудон и Карл Грюн».Издание снабжено комментариями, указателем имен (в fb2 удалён в силу физической бессмысленности). Предназначено для всех, кто интересуется философией, этикой, социологией.

Пьер Жозеф Прудон

Философия / Образование и наука