Читаем Простое начало. Как четыре закона физики формируют живой мир полностью

Вы наверняка встречались с экспоненциальной записью чисел и раньше. Здесь я объяснил ее принцип для иллюстрации закономерностей, в соответствии с которыми можно выстраивать связи между числами. На занятиях со студентами не естественно-научных направлений я часто спрашиваю: «Чему равно десять в нулевой степени?» Почти все отвечают: «Единице». Немногие, однако, могут объяснить почему. Я прошу их представить, как в разговоре с другом они сообщают, что 100 = 1, а друг восклицает: «Не верю!» Как же его убедить? Аргумент «так по правилу» не сработает (да и не должен), нужно просто описать, по какому принципу числа взаимодействуют друг с другом. Более того, поняв эти закономерности, вы сможете при необходимости самостоятельно выводить правила, а не полагаться на припоминание заученного. Это освобождает.

Но вернемся к нашему списку биологических объектов, которые я расположил в порядке возрастания их типичных размеров (в степенях числа 10):



Вы можете составить и собственный список, со своим диапазоном степеней числа 10. Как же меняются физические силы, действующие на животных и растения, когда мы поднимаемся и спускаемся по лестнице размеров? Рассмотрим для начала плавание.

Почему бактерия не может плавать, как кит?

Кит скользит по океану, плавно двигая хвостом вверх-вниз. Подобным же образом перемещаются акулы и многие другие рыбы: хотя из-за вертикальной ориентации плавников хвосты у них ходят из стороны в сторону, движение это остается возвратно-поступательным, то есть хвост попеременно движется в противоположных направлениях по одному и тому же пути. Если рассмотреть под микроскопом, как плывет бактерия, инфузория или другой микроорганизм, окажется, что все они перемещаются иначе, хотя и удивительным множеством способов: их жгутики вращаются подобно штопору, на клетке появляются выпячивания и так далее. Давайте разберемся, почему же их движения никогда не бывают возвратно-поступательными.

Любое существо, плывущее в воде, при продвижении выталкивает жидкость. Делать это тяжело по двум причинам. Первая – инерция: нужно приложить усилие, чтобы придать ускорение лежащему на земле мячу, и точно так же нужно приложить усилие, чтобы придать ускорение какой-то части ранее неподвижной воды (далее она будет стремиться продолжать движение с той же скоростью). Вторая причина – вязкость: когда мы ложкой толкаем мед, он тянет за собой и мед, который с ней не соприкасается, и нам необходимо приложить силу для преодоления такого сопротивления (оно обусловлено трением между слоями вязкой среды). Действие этих двух сил неизбежно. Отношение инерционной силы к силе вязкого трения назвали числом Рейнольдса – в честь пионера гидродинамики Осборна Рейнольдса, который в 1868 году стал вторым в истории Англии профессором инженерии2

. Каждая ситуация, в которой задействованы жидкости, характеризуется числом Рейнольдса, и это очень удобный, лаконичный способ описывать поток. Потоки с высоким числом Рейнольдса турбулентны: когда инерция доминирует над вязкостью, поток завихряется, и массы воды хаотически сталкиваются друг с другом, подобно мячикам. Потоки с низким числом Рейнольдса, напротив, спокойны: когда вязкость преобладает, поток постепенно затихает возле движущегося объекта. (Число это признают «высоким» или «низким» в сравнении с единицей, числом Рейнольдса, при котором силы инерции и вязкого трения равны.) Мы можем определить число Рейнольдса, зная свойства жидкости и движущегося в ней объекта. При высокой скорости, большом размере и низкой вязкости число Рейнольдса высокое, а при низкой скорости, малом размере и высокой вязкости – низкое.

Если бактерия размером 10–6 метров движется в воде со скоростью около 10–5 метров в секунду, соответствующее число Рейнольдса составит примерно 10–5

, или 0,00001, то есть будет совсем низким. Если же в воде плывет кит, число Рейнольдса будет около 108, то есть очень высоким, в 10 000 000 000 000 раз выше, чем для бактерии. (Теперь вы понимаете, почему нам интересен лишь порядок величин: совершенно неважно, какова точная длина бактерии, 1 × 10–6 или 2,61 × 10–6 метров, поскольку числа Рейнольдса в любом случае различаются на 13 степеней числа 10.) Следовательно, бактерия и кит живут в очень разных жидких мирах: мир бактерии спокоен, а мир кита – турбулентен.

Перейти на страницу:

Похожие книги

Психология стресса
Психология стресса

Одна из самых авторитетных и знаменитых во всем мире книг по психологии и физиологии стресса. Ее автор — специалист с мировым именем, выдающийся биолог и психолог Роберт Сапольски убежден, что человеческая способность готовиться к будущему и беспокоиться о нем — это и благословение, и проклятие. Благословение — в превентивном и подготовительном поведении, а проклятие — в том, что наша склонность беспокоиться о будущем вызывает постоянный стресс.Оказывается, эволюционно люди предрасположены реагировать и избегать угрозы, как это делают зебры. Мы должны расслабляться большую часть дня и бегать как сумасшедшие только при приближении опасности.У зебры время от времени возникает острая стрессовая реакция (физические угрозы). У нас, напротив, хроническая стрессовая реакция (психологические угрозы) редко доходит до таких величин, как у зебры, зато никуда не исчезает.Зебры погибают быстро, попадая в лапы хищников. Люди умирают медленнее: от ишемической болезни сердца, рака и других болезней, возникающих из-за хронических стрессовых реакций. Но когда стресс предсказуем, а вы можете контролировать свою реакцию на него, на развитие болезней он влияет уже не так сильно.Эти и многие другие вопросы, касающиеся стресса и управления им, затронуты в замечательной книге профессора Сапольски, которая адресована специалистам психологического, педагогического, биологического и медицинского профилей, а также преподавателям и студентам соответствующих вузовских факультетов.

Борис Рувимович Мандель , Роберт Сапольски

Биология, биофизика, биохимия / Психология и психотерапия / Учебники и пособия ВУЗов
Основы психофизиологии
Основы психофизиологии

В учебнике «Основы психофизиологии» раскрыты все темы, составляющие в соответствии с Государственным образовательным стандартом высшего профессионального образования содержание курса по психофизиологии, и дополнительно те вопросы, которые представляют собой «точки роста» и привлекают значительное внимание исследователей. В учебнике описаны основные методологические подходы и методы, разработанные как в отечественной, так и в зарубежной психофизиологии, последние достижения этой науки.Настоящий учебник, который отражает современное состояние психофизиологии во всей её полноте, предназначен студентам, аспирантам, научным сотрудникам, а также всем тем, кто интересуется методологией науки, психологией, психофизиологией, нейронауками, методами и результатами объективного изучения психики.

Игорь Сергеевич Дикий , Людмила Александровна Дикая , Юрий Александров , Юрий Иосифович Александров

Детская образовательная литература / Биология, биофизика, биохимия / Биология / Книги Для Детей / Образование и наука