Эта способность видеть предметы, которых не существует в реальности, ощущать их прямо здесь, перед вами, и манипулировать ими в мыслях так же свободно, как если бы вы могли к ним прикоснуться, – и есть одна из ваших волшебных способностей.
Путь, который позволит вам по-настоящему понять математику, начинается отсюда.
Наша удивительная способность к абстракции
Идеальный круг – это математическая абстракция. Круги выглядят для вас знакомыми предметами потому, что вы, как и все люди, обладаете природной способностью к математической абстракции.
Ваша способность к абстракции не ограничена математикой.
Хотите вы того или нет, вы все время смотрите на мир абстрактным взглядом. Это физиологическое свойство вашего тела. Ваш мозг – машина для извлечения абстракций и мысленных манипуляций с ними, так же как ваши легкие – машина для извлечения кислорода из воздуха и передачи его в кровь.
Как такое возможно? Об этом пойдет речь в главе 19, где мы увидим, как структура нашего мозга
А до тех пор, даже если вы не вполне понимаете, как возможно такое чудо, приходится признать очевидное: вы способны увидеть круг.
Наша удивительная способность к рассуждению
Может ли прямая линия пересекать окружность в трех точках? Не торопитесь. Тут нет подвоха. Просто попробуйте составить собственное мнение. Попробуйте представить все способы, которыми прямая может пересекать окружность, и увидеть, возможны ли в некоторых случаях три точки пересечения.
Нет, прямая не может пересекать окружность в трех точках.
Ответ кажется вам очевидным? Это потому, что вам, как и всем людям, присуща удивительная способность к математическому рассуждению.
Вы не просто способны вообразить абстрактные объекты, такие как прямые и окружности, – вы способны задаваться абстрактными вопросами об этих объектах и манипулировать ими у себя в голове, чтобы найти ответ.
Ответ для вас очевиден, но что вы будете делать, если кто-то скажет вам, что не понимает?
Вам захочется начать объяснения со слов «ну ты же видишь…», но это не сработает. Если кто-то не понимает, значит, этот кто-то не видит окружности и прямые так же ясно, как вы. Объяснять математику – значит помогать другим увидеть то, что они еще не умеют видеть.
Ваше рассуждение происходит интуитивно и визуально. У вас в голове оно похоже на мультик, где персонажи – окружность и прямая. Такой тип рассуждения очень эффективен, но его трудно передать словами. Слова никогда не могут в полной мере объяснить тонкости того, что вы видите.
Получая математическое образование, вы научитесь преобразовывать свою визуальную интуицию в строгие доказательства. Преобразование никогда не будет идеально точным. Чтобы выразить понятные выводы интуиции, нужно много слов. У вас в голове все так просто. Но стоит это написать – и все становится жутко техничным и сложным.
Наша удивительная интуиция
Вы – единственный, кто способен видеть, что происходит у вас в голове. Пусть это трудно, но только постаравшись строго перевести все это в слова и символы, вы сможете поделиться этим с другими. А еще эти усилия по переводу – единственный способ проверить, что ваша интуиция не ошиблась.
Потому что иногда она ошибается.
Вы это знаете и не любите, когда вам об этом напоминают. Самый верный способ задеть кого-то – посмеяться над его внешностью. Но заставить его усомниться в своей интуиции – вот способ поистине действенный. Обычно срабатывает один из двух защитных механизмов: или человек решает, что он полное ничтожество, зарабатывает комплекс неполноценности и перестает рефлексировать, или же говорит себе, что он все равно прав, а остальные – просто болваны (и тоже перестает рефлексировать).
Однако есть и третий путь. Когда Эйнштейну или Декарту говорят, что их интуиция ошибочна, они не чувствуют себя задетыми. Не считают себя ничтожествами. И тем более не считают других болванами. Они реагируют иначе. Как именно? Это одна из центральных тем данной книги.
Когда в школе вас научили не доверять интуиции, учителя совершили две ошибки. Две величайших ошибки, затормозивших ваше интеллектуальное развитие.
Первая ошибка – все преувеличивать. Вам создали комплексы на пустом месте. Да, ваша интуиция иногда ошибается – но не всегда. Зачастую она права. И вы можете сделать так, чтобы она как можно реже ошибалась. Вы можете научить ее видеть яснее и точнее. Начиная на том же уровне, что и вы, математики создают себе сильную и надежную интуицию. Они делают это с помощью простых методов, таких как те, что описаны в этой книге.
Борис Александрович Тураев , Борис Георгиевич Деревенский , Елена Качур , Мария Павловна Згурская , Энтони Холмс
Культурология / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Детская познавательная и развивающая литература / Словари, справочники / Образование и наука / Словари и Энциклопедии