Читаем Радиоэлектроника-с компьютером и паяльником полностью

Диоды Шоттки имеют структуру металл-полупроводник, позволяющую получить высокое быстродействие при переключениях напряжения. Очевидно, на особенность поведения этого контакта впервые обратил внимание еще в 1922 г. сотрудник Нижегородской радиолабаратории О. В. Лосев, систематическое же исследование провел В. Шоттки, именем которого и были названы подобные полупроводниковые приборы. Обычно диоды Шоттки изготавливают на основе кристаллов кремния или арсенида галлия. Они широко используются в СВЧ-технике связи и как составной элемент интегральных логических микросхем.

Пин-диоды, или p-i-n-диоды, выполняют в виде многослойной структуры, в которой между р и n областями полупроводника образуется слой с высокой собственной электропроводностью, называемый i-слоем. В режиме переключения проводимость этого слоя меняется на четыре порядка, что позволяет использовать пин-диоды, например, как быстродействующие, переключательные СВЧ-диоды.

Варикапы (от англ. varyable — переменный и capacity — емкость) — диоды, у которых используется барьерная емкость запертого р-n перехода, зависящая от величины приложенного к диоду обратного напряжения. Если рассматривать диод как своеобразный конденсатор, можно обнаружить, что толщина потенциального барьера

р-n перехода будет тем больше, чем больше (по модулю) обратное напряжение. Его увеличение как бы раздвигает обкладки конденсатора, что приводит к естественному уменьшению емкости. Существование барьерной емкости обычно ограничивает быстродействие диодов и их частотные характеристики, в варикапах же «то, что немцу плохо…», наоборот, работает на пользу. При прямых напряжениях эта емкость шунтируется малым сопротивлением и снижается добротность. Основными характеристиками варикапов служат: номинальная, минимальная и максимальная емкости; максимально допустимое напряжение и мощность. Варикапы применяют для электронной настройки колебательных контуров.

Поскольку полупроводниковые материалы и структуры из них весьма разнообразны, то и приборов на их основе создано, помимо перечисленных, и будет еще создаваться очень много. Однако, прервем на этом наш обзор, отнеся лишь рассмотрение фото- и светодиодов, в раздел оптоэлектронных компонентов.


Тиристоры


Развитие силовой полупроводниковой электронной техники шло по пути вытеснения электровакуумных и газоразрядных приборов из выпрямителей и преобразователей.

Тиристоры — это обширный класс полупроводниковых приборов, используемых для выпрямления и электронного переключения. Они являются полупроводниковыми устройствами с двумя устойчивыми состояниями, имеющими три или более р-n переходов. Поскольку в качестве полупроводника в тиристорах используется кремний, то в отечественной литературе их также называют кремниевыми управляемыми вентилями.

Тиристоры широко используются для регулирования мощности постоянного и переменного тока в нагрузке за счет ее включения и выключения. Тиристоры были изобретены примерно через десять пет после изобретения биполярного транзистора, который имеет трехслойную структуру (р-n-р или n-р-n

). Простейший тиристор имеет четырехслойную структуру (р-n-р-n). На первый взгляд может показаться, что здесь нет ничего нового: просто два диода (р-n) перехода, соединенных последовательно. Однако это совсем не так.

Соединив два диода последовательно, получим такую цепь: проводник (анод) — р слой — n слой — проводник — р слой — n слой — проводник (катод). Отличие заключается в том, что в такой неправильной модели в средней части структуры область n-р перехода заменяется проводником, и… «вместе с водой выплескивается ребенок». Именно эта обратно смещенная область разделяет всю структуру и играет поэтому роль первой скрипки. При подаче на такую структуру напряжения — плюс к аноду, минус — к катоду, два крайних р-n перехода будут открыты (как прямо включенные диоды), а средний

n-р переход будет закрыт (обратно смещенный диод), и вся структура окажется запертой (сквозной ток будет близок к нулю). Если напряжение на этом переходе превысит некоторый предел — напряжения включения — Uвкл, то структура как бы открывается. Можно также дополнительно управлять этим процессом, сделав дополнительный вывод (управляющий электрод) от срединной области р и задавая определенный ток управления Iynp.

Тиристоры, имеющие два вывода, т. е. диодные тиристоры называют динистороми, а триодные — тринисторами. Вообще же, для образования названия этого класса полупроводниковых приборов — тиристоры — был использован смешанный способ аббревиации путем сложения греческого тира (thyra — дверь) и части слова резистор

(или транзистор). Роль открытой или запертой «двери» играет вышеупомянутая область n-р перехода, а роль «ключа» к ней — напряжение для диодной структуры и управляющий электрод — для триодной (рис. 13).



Рис. 13.Тиристоры:

а — внешний вид; б — УГО и компоненты EWB


Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки