Читаем Радиоэлектроника-с компьютером и паяльником полностью

а — внешний вид; б, в — УГО биполярных транзисторовn-р-n и р-n-р типов и их модельные компоненты EWB;

г, д — УГО полевых транзисторов с n- и
p-каналами и их модельные компоненты EWB


Как уже указывалось выше, транзистор, представляющий собой электрический трехполюсник, включается в каскады в качестве четырехполюсника, поэтому один вывод с неизбежностью становится общим, что и дает название схеме включения. Наиболее распространенной является схема с общим эмиттером. Схемотехника транзисторных цепей с общим эмиттером аналогична схемотехнике ламповых цепей с триодами: эмиттер — катод, база — сетка, а коллектор — анод.


Полевые транзисторы

История изобретения и создания этого класса полупроводниковых приборов достаточно туманна: в разных источниках скупо упоминаются различные люди и даты. Возможно, что это связано с большой разновидностью подобных устройств. Поэтому, не анализируя, перечислим все известные нам факты в хронологическом порядке. В 1925 г. Юлиус Лилленфельд изобрел полевой транзистор с р-n переходом и полевой транзистор с изолированным затвором. В 1939 г. английский ученый О. Хейл получил патент на устройство, в котором электрическое поле изолированного электрода управляло током, протекающим в тонком слое полупроводника. В 1952 г. упомянутый выше Шокли дал теоретическое описание униполярного полевого транзистора. Такие транзисторы, получившие название полевых с управляемым р-n переходом были впоследствии изготовлены Дейси и Россом, которые в 1955 г. также дали аналитическое описание их характеристик. В 1956 г. С. Тешнер (Франция) изобрел одну из разновидностей полевых транзисторов. В 1960 г. М. Атала и Д. Канг предложили использовать структуру металл-окисел-полупроводник в качестве основы для создания особого вида полевых транзисторов. Очевидно, что именно с этих транзисторов, которые стали широко использоваться в интегральных микросхемах, и по-настоящему началась эра полевых транзисторов. Полевые транзисторы не вытеснили биполярные, а лишь удачно дополнили их, так как обладали рядом уникальных особенностей, с которыми можно легко ознакомиться в виртуальных моделях.

Вначале дадим некоторые пояснения терминов и обозначений. Названия этого класса полупроводниковых приборов связаны с их принципом действия. В некоторой области полупроводника (канале, отсюда одно из названий — канальные) протекает ток основных носителей заряда, одного знака отсюда — униполярные транзисторы. Управление значением тока осуществляется поперечным электрическим полем, отсюда другое название — полевые транзисторы (в английской транслитерации — Field Effect Transistor, сокращенно FET). Все эти названия с разных сторон характеризуют один и тот же прибор и являются общеупотребительными.

Все разновидности полевых транзисторов можно, по существу, разделить на два больших класса: полевые транзисторы с управляющим р-n переходом — Junction (плоскостной) FET, или JFET, и полевые транзисторы с изолированным затвором — Insulated (изолированный) Gate (затвор), т. е. Insulated Gate FET, или сокращенно IJFET. Транзисторы последнего типа содержат в своей структуре Металл-Оксид-Полупроводник, отсюда сокращенно МОП или, на английском, Metall-Oxide-Semiconductor FET (MOSFET). Поскольку используемые оксиды (диоксид кремния SiО2

) являются частным случаем диэлектрика, то в русском наименовании слово «оксид» меняют на «диэлектрик» и тогда аббревиатура превращается в МДП (соответственно в английском это Insulator и сокращенно MISFET). Выделяют также полевые транзисторы с каналом n-типа на основе арсенида галлия GaAsFET.

Использование комплементарных структур добавляет в русской аббревиатуре в их названии префикс «К»: КМОП или в английском «С» (от Complementary): CMOS. Именно последний акроним используется для обозначения энергонезависящей памяти компьютера, выполненной в виде интегральной микросхемы по соответствующей технологии. Данная микросхема хранит все начальные установки конфигурации ПК и, обладая малым потреблением энергии, работает годами без выключения, питаясь от миниатюрного аккумулятора.

В символике УГО полевых транзисторов (см. рис. 14 г, д) присутствует все та же направляющая стрелка, обозначающая электрод, называемый затвором (Gate), два других электрода имеют очевидные названия: исток (Source) — аналог эмиттера, сток (Drain) — аналог коллектора.

Перейти на страницу:

Все книги серии Массовая радиобиблиотека

Похожие книги

Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки