Читаем Ракеты и полеты в космос полностью

Двадцать лет назад ученые с большим жаром обсуждали две проблемы; сможет ли ракета выйти за пределы земной атмосферы и будет ли она в состоянии преодолеть силу земного притяжения. При этом высказывались опасения, что ракета за очень короткий промежуток времени разовьет слишком большую скорость и потратит подавляющую часть своей энергии на преодоление сопротивления воздуха. Сегодня большинство этих опасений можно считать беспочвенными; ракеты уже не раз выходили из пределов земной атмосферы. Практика показала, что стоит только ракете на оптимальном режиме достичь тропопаузы, как будут устранены почти все препятствия для ее дальнейшего движения вверх. Это объясняется тем, что атмосферный слой, лежащий ниже тропопаузы, содержит 79% всей массы воздуха; стратосфера охватывает 20% массы, а в ионосфере рассеяно менее 1 % всей массы воздуха.

Степень разреженности воздуха в верхних слоях атмосферы еще лучше иллюстрируется средней длиной свободного пробега молекул воздуха. Известно, что на уровне моря в 1см3

воздуха при +15°C содержится 2,568 X 1019 молекул, которые постоянно находятся в быстром движении. Так как молекул очень много, они часто сталкиваются между собой. Среднее расстояние по прямой, которое молекула проходит от одного до другого столкновения, называется средней длиной свободного пробега. Этот параметр не зависит от скорости движения молекулы, а следовательно, и от температуры среды. На уровне моря средняя длина свободного пробега молекул воздуха равна 9,744 X 10-6
см, на высоте 18км она уже достигает 0,001мм, на высоте 50км составляет 0,1мм, а в 400км от Земли она приближается к 8км.

На еще больших высотах понятие средней длины свободного пробега молекул теряет всякое значение, так как воздух здесь перестает быть непрерывной средой и превращается в скопление молекул, двигающихся вокруг Земли по независимым астрономическим орбитам. Вместо сплошной атмосферы на этих высотах отмечается область «молекулярных спутников», которую астрофизики называют «экзосферой».

В верхних слоях атмосферы встречаются зоны высоких температур. Так, на высоте 80км температура составляет 350° С. Но эта весьма внушительная на первый взгляд величина выражает по сути дела только то, что молекулы воздуха здесь перемещаются с очень большой скоростью. Нагреться же до такой температуры, оставаясь здесь в течение недолгого времени, попавшее сюда тело не может, как не могут погибнуть от жары люди, находящиеся в просторном сарае, в одном углу которого висит лампочка с нитью накала, раскаленной до нескольких тысяч градусов.

В специальной литературе не раз поднимался вопрос об отыскании такой «оптимальной скорости» ракеты, которая была бы достаточной для преодоления сопротивления воздуха и силы земного тяготения, но не настолько большой, чтобы вызвать перегрев ракеты. Практика показывает, что этот вопрос практического значения не имеет, так как крупные жидкостные ракеты, двигающиеся довольно медленно в нижних слоях атмосферы, не могут иметь ускорений, которые обеспечили бы их разгон даже до «оптимальной скорости» на этом участке траектории. К моменту достижения этой скорости ракеты, как правило, оказываются за пределами нижних слоев атмосферы и не подвергаются больше опасности перегрева.

Несколько лет назад появились первые большие ракеты на твердом топливе, которые вызвали в ходе их разработки необходимость изменения многих уже установившихся норм проектирования ракет. Национальный консультативный комитет по авиации (НАКА) провел для этого ряд исследований с целью выбора наиболее приемлемых форм для корпуса, хвостового оперения, крыльев ракет, предназначенных для полетов на больших скоростях. Были построены и запущены с двигателями на твердом топливе опытные модели, полезные нагрузки которых были так велики, а время работы двигателей столь непродолжительно, что опасность превышения «оптимальной скорости» почти не появлялась. В дальнейшем ракеты на твердом топливе, особенно ракета «Дикон», стали применяться для научных исследований, и прежде всего для исследований космических лучей.

Космические лучи представляют собой быстро движущиеся элементарные частицы (главным образом протоны). Когда такая частица приближается к Земле, магнитное поле Земли отклоняет ее, и может случиться так, что она вообще не попадет в атмосферу. В самых верхних слоях атмосферы протоны сталкиваются с атомами кислорода или водорода, в результате чего возникают качественно новые космические лучи, которые в технике называются «вторичными» в отличие от пришедших из космоса, то есть «первичных». Максимальная плотность космических лучей наблюдается на высоте около 40км, где вторичные лучи еще не успевают поглотиться атмосферой.

Источник происхождения первичных космических лучей пока неизвестен, так как магнитное поле Земли отклоняет их настолько сильно, что определить первоначальное направление их движения в пространстве оказывается невозможным.

Перейти на страницу:

Похожие книги

100 великих интриг
100 великих интриг

Нередко политические интриги становятся главными двигателями истории. Заговоры, покушения, провокации, аресты, казни, бунты и военные перевороты – все эти события могут составлять только часть одной, хитро спланированной, интриги, начинавшейся с короткой записки, вовремя произнесенной фразы или многозначительного молчания во время важной беседы царствующих особ и закончившейся грандиозным сломом целой эпохи.Суд над Сократом, заговор Катилины, Цезарь и Клеопатра, интриги Мессалины, мрачная слава Старца Горы, заговор Пацци, Варфоломеевская ночь, убийство Валленштейна, таинственная смерть Людвига Баварского, загадки Нюрнбергского процесса… Об этом и многом другом рассказывает очередная книга серии.

Виктор Николаевич Еремин

Биографии и Мемуары / История / Энциклопедии / Образование и наука / Словари и Энциклопедии
Маршал Советского Союза
Маршал Советского Союза

Проклятый 1993 год. Старый Маршал Советского Союза умирает в опале и в отчаянии от собственного бессилия – дело всей его жизни предано и растоптано врагами народа, его Отечество разграблено и фактически оккупировано новыми власовцами, иуды сидят в Кремле… Но в награду за службу Родине судьба дарит ветерану еще один шанс, возродив его в Сталинском СССР. Вот только воскресает он в теле маршала Тухачевского!Сможет ли убежденный сталинист придушить душонку изменника, полностью завладев общим сознанием? Как ему преодолеть презрение Сталина к «красному бонапарту» и завоевать доверие Вождя? Удастся ли раскрыть троцкистский заговор и раньше срока завершить перевооружение Красной Армии? Готов ли он отправиться на Испанскую войну простым комполка, чтобы в полевых условиях испытать новую военную технику и стратегию глубокой операции («красного блицкрига»)? По силам ли одному человеку изменить ход истории, дабы маршал Тухачевский не сдох как собака в расстрельном подвале, а стал ближайшим соратником Сталина и Маршалом Победы?

Дмитрий Тимофеевич Язов , Михаил Алексеевич Ланцов

Фантастика / История / Альтернативная история / Попаданцы
1066. Новая история нормандского завоевания
1066. Новая история нормандского завоевания

В истории Англии найдется немного дат, которые сравнились бы по насыщенности событий и их последствиями с 1066 годом, когда изменился сам ход политического развития британских островов и Северной Европы. После смерти англосаксонского короля Эдуарда Исповедника о своих претензиях на трон Англии заявили три человека: англосаксонский эрл Гарольд, норвежский конунг Харальд Суровый и нормандский герцог Вильгельм Завоеватель. В кровопролитной борьбе Гарольд и Харальд погибли, а победу одержал нормандец Вильгельм, получивший прозвище Завоеватель. За следующие двадцать лет Вильгельм изменил политико-социальный облик своего нового королевства, вводя законы и институты по континентальному образцу. Именно этим событиям, которые принято называть «нормандским завоеванием», английский историк Питер Рекс посвятил свою книгу.

Питер Рекс

История