До сих пор (на каждом из ста случаев, которые вы смогли пронаблюдать) Омега оказывался прав: каждый, кто брал оба ящика, находил ящик Б пустым и получал только тысячу долларов; каждый, кто брал только ящик Б, обнаруживал в нём миллион. (Будем полагать, что ящик А исчезает в облаке дыма, если вы берете только ящик Б; нельзя взять ящик А уже потом.)
До того, как вы сделаете выбор, Омега уже улетел, чтобы приступить к следующей игре. Ящик Б либо уже пуст, либо уже содержит деньги.
Омега бросает два ящика прямо перед вами и исчезает.
Вы возьмете оба или только ящик Б?
Типичная дискуссия об этой задаче протекает примерно так:
Вася: «Конечно же, я возьму только ящик Б. Лучше выиграть миллион, чем тысячу».
Петя: «Омега уже скрылся. Ящик Б либо уже полон, либо уже пуст. Если он уже пуст, то я получу 1000 долларов, взяв оба ящика, и ничего, если возьму только один. Если ящик Б уже полон, то, если я возьму оба, мне достанется 1 001 000 долларов, а если возьму только Б, то 1 000 000 долларов. В любом случае взять оба ящика лучше, а оставить тысячу долларов хуже, так что я буду действовать рационально и возьму оба ящика».
Вася: «Если ты такой умный, то почему ты такой бедный?»
Петя: «Не моя вина, что Омега решил награждать только иррационально настроенных людей, но мой ход в этой игре уже ничего не изменит».
О парадоксе Ньюкома написаны горы литературы, особенно если считать дилемму заключенного ее частным случаем, каковым она, как правило, является. Например, «Парадоксы рациональности и кооперации» («Paradoxes of Rationality and Cooperation») — издание, в которое входит оригинальная статья Ньюкома.
Я сейчас не буду глубоко погружаться в литературу, но замечу, что преобладающее мнение в современной теории принятия решений гласит, что следует выбрать оба ящика, а Омега просто вознаграждает агентов с нерациональными установками. Эта доминирующая точка зрения берет свое начало из причинной теории принятия решений
Как вам известно, основная причина того, что я пишу в блог, — моя невероятно низкая скорость, если я пытаюсь писать в каком-либо другом формате. Так что я не собираюсь выкладывать здесь мой собственный разбор проблемы Ньюкома. Это была бы слишком долгая история, даже по моим стандартам.
Но даже адепты причинной теории согласны, что если у вас есть силы заранее настроить себя на то, чтобы взять один ящик, то нужно сделать это. Если вы можете «настроиться» до того, как Омега проверит вас, то этим самым вы непосредственно обусловливаете то, что ящик Б не будет пустым.
В моей области деятельности (в построении самоулучшающегося искусственного интеллекта, если кто забыл) это выражается так: если вы построите ИИ, берущий оба ящика в проблеме Ньюкома, то он изменит себя так, чтобы брать один ящик, если сможет заранее предположить, что может столкнуться с такой ситуацией. Агенты, имеющие свободный доступ к своему исходному коду, способны легко настраивать себя заранее.
Что, если вы ожидаете, что можете встретиться с этой задачей, но не знаете точную формулировку? Тогда вам необходимо изменить себя, сделав свои установки такими, какие в общем случае обеспечивают высокий выигрыш в подобных задачах.
Но в чем же заключаются установки, нацеленные на хорошее решение задач вроде этой? Можно ли описать их формально?
Да, но, пытаясь сделать это, я осознаю, что начинаю писать небольшую книгу. (И не самую важную книгу, которую пишу, так что я откладываю это. Моя низкая скорость письма — настоящая отрава моего существования.) В теории, над которой я работаю, больше, как мне кажется, положительных моментов, не считая даже того, что она лучше решает задачи вроде проблемы Ньюкома. Работа могла бы стать неплохой диссертацией, если бы я нашел кого-нибудь, кто принял бы у меня ее в таком качестве. Но стряхнуть пыль с этого проекта и снова взяться за него заняло бы слишком много времени и сил; я бы не смог оправдать такой расход времени, учитывая скорость, с которой я сейчас пишу книги.
Я говорю это потому, что общепринятая позиция гласит: «Словесные аргументы в пользу того, чтобы брать один ящик, отыскать легко, но трудно разработать хорошую теорию, которая этого требует». Нужна последовательная математическая теория принятия решений, указывающая на необходимость брать только один ящик и не порождающая парадоксов в других задачах. Я понимаю, как можно это сделать, и взялся за разработку таковой, но скорость, с которой я пишу крупные работы, так низка, что я не могу ее опубликовать. Верите ли вы или нет, но это так.
Несмотря на всё это, я бы хотел изложить некоторые собственные мотивы к решению этой проблемы, причины, побудившие меня отыскивать новую теорию, — потому что они разъясняют мое базовое отношение к вопросу рациональности (даже если я не смогу рассказать саму теорию, к созданию которой эти мотивы побуждают).