Читаем Разберись в Data Science полностью

Обратите внимание на то, что эта таблица содержит строки и столбцы, которые играют определенные роли в процессе интерпретации ее содержимого. Каждая горизонтальная строка таблицы представляет собой измеренный экземпляр связанной информации. В данном случае – информации о маркетинговой кампании. Каждый вертикальный столбец таблицы представляет собой список интересующих нас фрагментов информации, имеющих общую кодировку, что позволяет нам сравнивать экземпляры между собой.

Строки подобных таблиц обычно называются наблюдениями, записями, кортежами или испытаниями. Столбцы в наборах данных часто называются признаками, полями, атрибутами, предикторами или переменными.

Знайте свою аудиторию

Работа с данными ведется во множестве предметных областей, в каждой из которых используется профессиональный сленг, поэтому для одних и тех же вещей существует несколько названий. Одни специалисты по работе с данными могут называть столбцы в наборе данных «признаками», а другие – «переменными» или «предикторами». Поэтому главному по данным важно уметь ориентироваться в предпочтениях разных групп.

Табл. 2.1. Пример набора данных о рекламных расходах и прибыли


Точка данных – это место пересечения наблюдения и признака. В данном случае примером точки данных является 150 единиц товара, проданного 01 февраля 2021 года.

Таблица 2.1 имеет заголовок (фрагмент нечисловых данных), который помогает нам понять, что означает каждый признак. Обратите внимание, что строка заголовка не обязательна. В таких случаях заголовок подразумевается, и человек, работающий с набором данных, должен знать, что означает каждый из признаков.

Типы данных

Существует множество способов кодирования информации, однако специалисты по работе с данными используют несколько видов кодировки для хранения информации и передачи полученных результатов. Два наиболее распространенных типа данных – числовые и категориальные.

Числовые данные в основном состоят из чисел, но могут включать дополнительные символы для обозначения единиц. К категориальным данным относятся слова, символы, фразы и (как ни странно) иногда числа – например, почтовые индексы. И числовые, и категориальные данные делятся на дополнительные подкатегории.

Существуют два основных типа числовых данных:


– Непрерывные данные могут принимать любое значение в некотором числовом диапазоне. Они представляют собой принципиально неисчисляемый набор значений. Возьмем, к примеру, погоду. Температура воздуха на улице, преобразованная в данные, будет представлять собой непрерывную переменную. Допустим, она составляет 65,62 градуса по Фаренгейту (18,67 °C). Местная новостная станция может передать это значение как 65 °F (18 °C), 66 °F (19 °C) или 65,6 °F (18,7 °C).

– Счетные (или дискретные) данные, в отличие от непрерывных, ограничивают точность целым числом. Например, количество автомобилей, которыми вы владеете, может быть равно 0, 1, 2 и так далее, но не 1,23. Это отражает основополагающую реальность измеряемой вещи[10]

.


Категориальные данные также делятся на два основных типа:


– Упорядоченные (или порядковые) данные – это категориальные данные, которым присущ определенный порядок. Такие данные используют, например, организаторы опросов, когда предлагают вам оценить свой опыт по шкале от 1 до 10. Хотя эти данные напоминают счетные, мы не можем приравнять разницу между оценками 10 и 9 к разнице между 1 и 0. Разумеется, порядковые категориальные данные не обязательно кодировать в виде чисел. Например, размер рубашки относится к порядковым данным, но его можно закодировать с помощью слов: маленький, средний, большой, очень большой.

– Неупорядоченные (или номинальные) категориальные данные не имеют присущего им порядка. Например, табл. 2.1 содержит признак «Медиа» со значениями «Печать», «Интернет» и «Телевидение». Другие примеры номинальных переменных – ответы «Да» и «Нет», а также принадлежность к демократической или республиканской партии. Порядок их перечисления всегда является произвольным – нельзя сказать, что одна категория «важнее» другой.


В табл. 2.1 также есть признак «Дата», представляющий собой дополнительный тип данных, который является последовательным и может использоваться в арифметических выражениях в качестве числовых данных.

Сбор и структурирование данных

В предыдущем разделе мы говорили о типах данных в наборах, однако существуют более крупные категории для описания способа сбора и структурирования данных.

Данные наблюдений и экспериментальные данные

Перейти на страницу:

Все книги серии Мировой компьютерный бестселлер

Похожие книги

1С: Управление торговлей 8.2
1С: Управление торговлей 8.2

Современные торговые предприятия предлагают своим клиентам широчайший ассортимент товаров, который исчисляется тысячами и десятками тысяч наименований. Причем многие позиции могут реализовываться на разных условиях: предоплата, отсрочка платежи, скидка, наценка, объем партии, и т.д. Клиенты зачастую делятся на категории – VIP-клиент, обычный клиент, постоянный клиент, мелкооптовый клиент, и т.д. Товарные позиции могут комплектоваться и разукомплектовываться, многие товары подлежат обязательной сертификации и гигиеническим исследованиям, некондиционные позиции необходимо списывать, на складах периодически должна проводиться инвентаризация, каждая компания должна иметь свою маркетинговую политику и т.д., вообщем – современное торговое предприятие представляет живой организм, находящийся в постоянном движении.Очевидно, что вся эта кипучая деятельность требует автоматизации. Для решения этой задачи существуют специальные программные средства, и в этой книге мы познакомим вам с самым популярным продуктом, предназначенным для автоматизации деятельности торгового предприятия – «1С Управление торговлей», которое реализовано на новейшей технологической платформе версии 1С 8.2.

Алексей Анатольевич Гладкий

Финансы / Программирование, программы, базы данных
C++ Primer Plus
C++ Primer Plus

C++ Primer Plus is a carefully crafted, complete tutorial on one of the most significant and widely used programming languages today. An accessible and easy-to-use self-study guide, this book is appropriate for both serious students of programming as well as developers already proficient in other languages.The sixth edition of C++ Primer Plus has been updated and expanded to cover the latest developments in C++, including a detailed look at the new C++11 standard.Author and educator Stephen Prata has created an introduction to C++ that is instructive, clear, and insightful. Fundamental programming concepts are explained along with details of the C++ language. Many short, practical examples illustrate just one or two concepts at a time, encouraging readers to master new topics by immediately putting them to use.Review questions and programming exercises at the end of each chapter help readers zero in on the most critical information and digest the most difficult concepts.In C++ Primer Plus, you'll find depth, breadth, and a variety of teaching techniques and tools to enhance your learning:• A new detailed chapter on the changes and additional capabilities introduced in the C++11 standard• Complete, integrated discussion of both basic C language and additional C++ features• Clear guidance about when and why to use a feature• Hands-on learning with concise and simple examples that develop your understanding a concept or two at a time• Hundreds of practical sample programs• Review questions and programming exercises at the end of each chapter to test your understanding• Coverage of generic C++ gives you the greatest possible flexibility• Teaches the ISO standard, including discussions of templates, the Standard Template Library, the string class, exceptions, RTTI, and namespaces

Стивен Прата

Программирование, программы, базы данных
Programming with POSIX® Threads
Programming with POSIX® Threads

With this practical book, you will attain a solid understanding of threads and will discover how to put this powerful mode of programming to work in real-world applications. The primary advantage of threaded programming is that it enables your applications to accomplish more than one task at the same time by using the number-crunching power of multiprocessor parallelism and by automatically exploiting I/O concurrency in your code, even on a single processor machine. The result: applications that are faster, more responsive to users, and often easier to maintain. Threaded programming is particularly well suited to network programming where it helps alleviate the bottleneck of slow network I/O. This book offers an in-depth description of the IEEE operating system interface standard, POSIX (Portable Operating System Interface) threads, commonly called Pthreads. Written for experienced C programmers, but assuming no previous knowledge of threads, the book explains basic concepts such as asynchronous programming, the lifecycle of a thread, and synchronization. You then move to more advanced topics such as attributes objects, thread-specific data, and realtime scheduling. An entire chapter is devoted to "real code," with a look at barriers, read/write locks, the work queue manager, and how to utilize existing libraries. In addition, the book tackles one of the thorniest problems faced by thread programmers-debugging-with valuable suggestions on how to avoid code errors and performance problems from the outset. Numerous annotated examples are used to illustrate real-world concepts. A Pthreads mini-reference and a look at future standardization are also included.

David Butenhof

Программирование, программы, базы данных