Читаем Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики полностью

Еще одно последствие развития Интернета вещей состоит в необходимости введения глобальных стандартов и принципов управления в отношении генерации и использования данных. Например, все приборы и вещи в вашем доме должны использовать один и тот же протокол. Но, если ваши соседи используют другие бренды с другими протоколами, это не создаст проблемы. Однако в других случаях использование разных протоколов является непозволительным. Например, если каждый бренд беспилотного автомобиля будет использовать свой патентованный метод передачи и сбора данных, то аварии станут неизбежными, поскольку автомобили не смогут эффективно взаимодействовать друг с другом. Кроме того, большое значение имеет принятие правовых и этических стандартов в отношении использования данных. Например, каким образом и кто будет отслеживать и анализировать водительскую историю владельцев автомобилей?

Для того чтобы беспилотные автомобили стали реальностью, все они должны использовать одинаковые стандарты. Каждый автомобиль должен быть в состоянии правильно отправлять и получать информацию о скорости, местоположении и намерении изменить траекторию движения. Разумеется, введение глобальных стандартов поначалу вызовет затруднения, но они необходимы и в долгосрочной перспективе окупят себя. К счастью, в настоящее время уже ведется разработка таких стандартов. В частности, компании, заинтересованные в развитии Интернета вещей, начали внедрять стандарты управления. От введения стандартов выиграет каждая организация, которая планирует использовать данные, поставляемые Интернетом вещей, для целей операционной аналитики.

Определите, где потребуется аналитика

Нередко проблема с управлением возникает при определении того, в какой части единого аналитического окружения следует выполнять каждый этап аналитического процесса. В конце концов ключевая задача управления – установить стандарты по использованию существующих активов. Между тем на вопрос, где должна осуществляться та или иная обработка, ответить непросто, поскольку это зависит от множества факторов. Они в значительной степени пересекаются с теми факторами, которые следует рассматривать при создании бизнес-кейса, о чем мы подробно говорили в четвертой главе. Это имеет смысл, поскольку решение о том, где и какую часть процесса следует реализовывать, должно быть основано на такой же объективной оценке различных вариантов с точки зрения затрат и доходов. Вы должны ответить на следующие вопросы:

• Какой из компонентов окружения может справиться с обработкой?

• Какие инструменты обладают необходимой функциональностью?

• Какими навыками, имеющимися и доступными, обладает команда?

• Где в настоящее время хранятся необходимые данные?

• Существуют ли какие-либо уже известные процессы, у которых можно позаимствовать код?

• Цель заключается в поиске нового инсайта или применении уже имеющегося?

• Какие вам требуются аналитические методы?

Все эти и многие другие факторы помогут определять, где лучше всего реализовать данный процесс или его часть. Но потребуются и усилия, чтобы выяснить, как наилучшим образом выполнить процесс в рамках сложного единого аналитического окружения. Давайте рассмотрим несколько соображений, которые при этом стоит иметь в виду.

Никогда не говорите, что это невозможно!

Один из уроков, которые я выучил за годы работы, состоит в том, что, если у вас есть опытный пользователь любых аналитических инструмента или технологии, значит, есть шансы, что, потратив достаточно времени и сил, он сможет выстроить практически все что угодно. В прошлом лично я разрабатывал аналитические процессы неидеальным образом. Знал только, что при помощи хорошо знакомых мне инструментов могу уложиться в сроки. При этом существовали куда более оптимальные способы реализации процессов. С традиционной пакетной аналитикой подобное обычно сходит с рук. Однако для операционной аналитики с ее степенью зависимости от фактора времени и с ее требованиями к масштабированию такой подход – когда для разработки решения выбираются не оптимальные, а хорошо знакомые подручные инструменты – вряд ли будет успешным.

Если вы спросите у первоклассного программиста, использующего язык SQL, сможет ли он выполнить предложенный ему набор логических задач, в большинстве случаев он ответит: «Да». Если вы спросите у специалистов по SAS или R, смогут ли они выстроить требуемую логику, они также ответят: «Да». Если вы спросите у программистов, специализирующихся на Python или Java, смогут ли они выстроить эту логику на Hadoop, они тоже ответят: «Да». Вот что вам нужно понять: все опытные специалисты смогут реализовать требуемую вам аналитическую логику. Проблема в том, что есть более или менее эффективные способы.

Перейти на страницу:

Похожие книги

Антихрупкость. Как извлечь выгоду из хаоса
Антихрупкость. Как извлечь выгоду из хаоса

«Антихрупкость» – книга уникальная: она рассказывает о ключевом свойстве людей, систем и не только, свойстве, у которого до сих пор не было названия. В мире, где царит неопределенность, нельзя желать большего, чем быть антихрупким, то есть уметь при столкновении с хаосом жизни не просто оставаться невредимым, но и становиться лучше прежнего, эволюционировать, развиваться. Талеб формулирует простые правила, которые позволяют нам преодолеть хрупкость и действовать так, чтобы непредсказуемая неопределенность, этот грозный и внезапный Черный лебедь, не причинила нам вреда – и более того, чтобы эта редкая и сильная птица помогла нам совершенствоваться. Для этого следует в первую очередь осознать: мы по природе своей антихрупки – и не должны позволять кому бы то ни было лишать нас этого чудесного свойства.

Нассим Николас Талеб

Деловая литература / О бизнесе популярно / Финансы и бизнес