Читаем Революция в аналитике. Как в эпоху Big Data улучшить ваш бизнес с помощью операционной аналитики полностью

Для иллюстрации рассмотрим пример с незастроенным земельным участком. Если вы обратитесь к девелоперу, строящему дома на одну семью, то он предложит вам оптимальный план постройки именно такого дома. Если обратитесь к девелоперу, который специализируется на кондоминиумах, таунхаусах или апартаментах, он предложит вам оптимальный способ максимизировать стоимость земли за счет указанных структур. Наконец, если обратитесь к девелоперу, работающему с коммерческой недвижимостью, он предложит вам оптимальный способ постройки торгового центра, медицинского комплекса или бизнес-парка. Важно, что каждый девелопер окажется прав в рамках своей компетенции. Это очень похоже на то, как в группе специалистов-аналитиков каждый предложит оптимальный способ построения аналитического процесса с использованием только предпочитаемого им компонента аналитического окружения и с помощью предпочитаемых им аналитических инструментов.

Оптимизируйте целое, а не части

Вы должны поставить цель оптимизировать эффективность аналитического процесса в целом за счет наилучшего использования компонентов единого аналитического окружения. Попытки оптимизировать процесс в рамках одного компонента могут привести к гораздо менее эффективным решениям, чем многокомпонентный подход.

Что должен сделать владелец участка, так это найти наилучшее использование земли в целом. План застройки вполне может представлять собой комбинацию нескольких домов на одну семью, одного-двух небольших многоквартирных дома и также небольшого торгового центра. Владельцу же участка следует увидеть картину целиком, под разными углами. Ему нужно проконсультироваться с разными экспертами и найти наилучшую комбинацию подходов для удовлетворения своих потребностей. Окончательный вариант может сочетать компоненты рекомендаций каждого эксперта. Такой же подход следует применять и к аналитическим процессам. Необходимое условие для этого – наличие людей, которые способны охватить картину целиком и найти компромиссное соотношение компонентов.

Управление операционной аналитикой

Отчасти по причине непопулярности этой темы организации часто думают об управлении в последнюю очередь, когда вступают в эпоху Аналитики 3.0, о которой мы говорили в первой главе, и начинают превращать традиционную аналитику в операционную. Только после того как произойдут серьезные отключения, многие компании начинают задумываться об управлении операционной аналитикой. Разработка встроенной, автоматизированной и высокомасштабированной операционной аналитики и текущее управление ею требуют других подходов к управлению в отличие от тех, что традиционно применялись к аналитическим процессам. При пакетной аналитике ошибка влияет только на обработку одного пакета, и у специалистов, как правило, есть достаточно времени, чтобы выявить и устранить эту ошибку до следующего сеанса пакетной обработки. В случае операционной аналитики ошибка будет быстро распространяться, пока не будет устранена.

Итак, мы рассмотрели некоторые соображения, которые следует принимать во внимание при внедрении операционно-аналитических процессов. Теперь давайте рассмотрим пару сценариев из реальной жизни, наглядно иллюстрирующих необходимость компромиссного соотношения различных компонентов единого аналитического окружения для достижения эффективности.

Разнообразные требования

С точки зрения управления реальную проблему для операционной аналитики представляет наличие двух разных и даже противоречащих друг другу наборов требований, которые должны быть удовлетворены. Первый набор относится к процессу обнаружения данных, когда организация пытается найти новые инсайты и определить аналитические процессы, способные оказать наибольшее влияние. В этом случае требуются максимальная гибкость и минимальные ограничения. Второй набор требований относится к развертыванию процесса на операционном уровне. В этом случае главным приоритетом становится обеспечение высокой скорости, надежности и стабильности. Эти два набора требований приведены в табл. 6.1. Хотя они существуют сами по себе и даже, кажется, противоречат друг другу, но оба вполне выполнимы в рамках соответственно конфигурированного аналитического окружения.



Перейти на страницу:

Похожие книги

Антихрупкость. Как извлечь выгоду из хаоса
Антихрупкость. Как извлечь выгоду из хаоса

«Антихрупкость» – книга уникальная: она рассказывает о ключевом свойстве людей, систем и не только, свойстве, у которого до сих пор не было названия. В мире, где царит неопределенность, нельзя желать большего, чем быть антихрупким, то есть уметь при столкновении с хаосом жизни не просто оставаться невредимым, но и становиться лучше прежнего, эволюционировать, развиваться. Талеб формулирует простые правила, которые позволяют нам преодолеть хрупкость и действовать так, чтобы непредсказуемая неопределенность, этот грозный и внезапный Черный лебедь, не причинила нам вреда – и более того, чтобы эта редкая и сильная птица помогла нам совершенствоваться. Для этого следует в первую очередь осознать: мы по природе своей антихрупки – и не должны позволять кому бы то ни было лишать нас этого чудесного свойства.

Нассим Николас Талеб

Деловая литература / О бизнесе популярно / Финансы и бизнес