Сейчас проблема заключается в том, чтобы расшифровать потайной смысл тесного мира и безмасштабной архитектуры, если таковая действительно существует. В ходе недавно проведенного эксперимента Райкард Соле обратил внимание на тенденцию к формированию системы соединений в электронных схемах в стиле тесного мира[261]
, причем он утверждает, что понял, в чем тут дело. Когда он анализировал и новейшие цифровые микросхемы, и безнадежно устаревшие схемы, применявшиеся в старых телевизорах, он замечал, что все компоненты этих схем находились друг от друга на расстоянии буквально двух-трех «электрических шагов»; вместе с тем они были гораздо более кластерированы, чем если бы они были в составе эквивалентной произвольной схемы, благодаря модульной конструкции, которую предпочитают разработчики электронных схем. Соле утверждает, что такой способ компоновки электронных схем вполне мог возникнуть в результате естественного отбора, в ходе которого альтернативные подходы к конструированию электронных схем конкурировали между собой за выживание. Другими словами, разработчики чисто интуитивно конструировали свои схемы в соответствии с принципами тесного мира, пытаясь найти идеальный компромисс между сокращением затрат и обеспечением высокой надежности.Барабаши и его коллеги указывали, что безмасштабные сети также воплощают некий компромисс, который носит на себе печать естественного отбора: они обладают внутренне присущей им устойчивостью к случайным сбоям[262]
, оставаясь при этом уязвимыми к преднамеренной атаке против их хабов. Учитывая то обстоятельство, что мутации случаются в непредсказуемые моменты времени, естественный отбор отдает предпочтение конструкциям, устойчивым к внезапным сбоям. В силу самой своей геометрии безмасштабные сети устойчивы по отношению к внезапным сбоям, поскольку заведомое большинство их узлов имеет небольшое число связей и, следовательно, используется достаточно редко. К сожалению, эта эволюционная конструкция имеет и обратную сторону. Когда хабы целенаправленно выбираются хакерами в качестве мишеней для атаки (что совершенно невозможно, когда речь идет о случайной мутации), целостность сети быстро снижается – размер гигантского компонента сокращается, а средняя длина пути, наоборот, увеличивается, по мере того как узлы оказываются изолированными, брошенными на произвол судьбы на их собственных маленьких островках.Свидетельством этого предполагаемого сочетания устойчивости и уязвимости является гибкость живых клеток. Исследуя сеть белковых взаимодействий в дрожжах[263]
, Барабаши и его коллеги обнаружили, что большинство белков, обладающих множеством связей, играют, вообще говоря, самую важную роль в выживаемости клетки. Они пришли к этому выводу, сопоставив информацию из двух разных баз данных. Сначала они проанализировали данные о связях, где два белка считаются связанными между собой, если известно, что один из них «приклеен» к другому. Такая сеть взаимодействий соответствует чрезвычайно неоднородной, безмасштабной архитектуре с небольшим количеством главных белков, опосредующих взаимодействия «рядовых» белков, имеющих гораздо более слабую систему связей. Затем Барабаши и его коллеги сопоставили данные о системе связей с результатами экспериментов по систематической мутации, в которых биологи предварительно удалили определенные белки, чтобы выяснить, будет ли их удаление иметь летальные последствия для клетки. Они обнаружили, что удаление любого их «рядовых» белков (93 % всех белков, имеющих менее 5 связей) оказалось фатальным лишь в 21 % случаев. Другими словами, клетка защищена от потери большинства своих индивидуальных белков точно так же, как безмасштабная сеть защищена от случайных сбоев большинства своих индивидуальных узлов. Напротив, удаление любого из главных белков (которые составляют 1 % от всех белков; у каждого из таких белков имеется не менее 15 соединений) оказалось смертельным в 62 % случаев.