Читаем Ритм Вселенной. Как из хаоса возникает порядок полностью

Вы, наверное, помните персонажа по имени Пигпен из старого комикса Peanuts. Вы редко видите Пигпена; все, что вы видите, это облако пыли, окружающее его; вы только знаете, что он находится где-то там, внутри облака. Аналогично, бозон окутан сферическим облачком, которое представляет собой совокупность концентрических оболочек вероятности, темный центр которого является наиболее вероятным местонахождением самой частицы. Этот центр является областью самой высокой вероятности – местом, где «находится» бозон, согласно привычному для нас доквантовому образу мышления – хотя всегда существует какая-то вероятность того, что он находится на самом краю такого облака.

Теперь представьте себе совокупность таких облачков, которые хаотически мечутся в трехмерном простанстве. Эта совокупность представляет собой газ бозонов. Вопрос: что произойдет с этим газом, если мы охладим его до температур, близких к абсолютному нулю? Согласно принципу неопределенности Гейзенберга, должно произойти нечто очень странное: эти размытые облачка станут еще более размытыми. Эти облачка вероятности станут шире и тоньше, а это означает, что перемещения бозонов станут бо

льшими. Чтобы понять, почему это произойдет, вспомните качели. Охлаждение бозонов замедлит их движения до такой степени, что они окажутся практически неподвижны, а это приведет к тому, что скорости их движения снизятся до какой-то определенной величины (их скорость не может оказаться ниже нуля). Но поскольку параметр «скорость» снижается, параметр «местоположение» растет: по мере того как скорости бозонов становятся все более определенными, их позиции становятся все менее определенными. Иными словами, они становятся еще более размытыми. Их облачка вероятности становятся шире.



При достижении некой критической температуры эти облачка вероятности расширяются настолько, что начинают взаимно перекрываться, а бозоны начинают сливаться друг с другом. Как только это произойдет, говорил Эйнштейн, большая их часть должна самопроизвольно перейти в одно и то же квантовое состояние – состояние наименьшей возможной энергии. Даже сам Эйнштейн не был уверен, какой вывод следует из такого предсказания. «Это замечательная теория, – писал он своему приятелю Полю Эренфесту в декабре 1924 г., – но что же она означает?»[132]

Спустя семьдесят один год после формулирования Эйнштейном этой математической концепции ее удалось воплотить – в 1995 г., в одной из лабораторий Баулдера, Колорадо. С помощью магнитных полей, охлажения испарением и лазеров, подобных тем, которые используются в устройствах считывания и записи компакт-дисков, Эрик Корнелл и Карл Виман охладили разреженный газ атомов рубидия до менее чем миллионной доли градуса[133] выше абсолютного нуля – температуры, которая вызывает благоговейный ужас даже у специалистов по низким температурам. В этих экстремальных условиях – которые, вполне возможно, ранее не достигались нигде во Вселенной – они наблюдали, как тысячи атомов ведут себя как один. В 2001 г. Корнелл, Виман и Вольфганг Кеттерле из МТИ стали лауреатами Нобелевской премии по физике за создание ими этого экзотического состояния материи, известного в настоящее время как бозе-эйнштейновская конденсация[134]

. Как было написано в пресс-релизе Королевской Академии наук Швеции, этим ученым удалось заставить атомы «петь в унисон»[135].

Феномен бозе-эйнштейновской конденсации в высшей степени необычен. Никто не может толком объяснить, что все это означает. Нередко говорят, что отдельные атомы объединяются в один гигантский «сверхатом». Другие характеризуют это новое состояние как «рагу, тщательно перемешанное до однородной массы»[136]. Лично мне больше нравится определение, предложенное Королевской Академией наук Швеции. Аналогия с пением в унисон соответствует самому духу бозе-эйнштейновской конденсации. Подобно синусоидальной или какой-либо другой волне, квантовая волна, связанная с бозоном (или тем, что мы называем его облаком вероятностей), характеризуется амплитудой и фазой. В бозе-эйнштейновской конденсации все эти волны действуют строго синхронно. Их пики и впадины совпадают во времени; физики говорят, что они «когерентны по фазе». Аналогично, когда какая-то система связанных осцилляторов пребывает в синхронизме, все они также имеют одну и ту же фазу. Разница заключается лишь в том, что осцилляторы не сливаются в один в буквальном смысле.

Перейти на страницу:

Похожие книги

Норвежский лес
Норвежский лес

…по вечерам я продавал пластинки. А в промежутках рассеянно наблюдал за публикой, проходившей перед витриной. Семьи, парочки, пьяные, якудзы, оживленные девицы в мини-юбках, парни с битницкими бородками, хостессы из баров и другие непонятные люди. Стоило поставить рок, как у магазина собрались хиппи и бездельники – некоторые пританцовывали, кто-то нюхал растворитель, кто-то просто сидел на асфальте. Я вообще перестал понимать, что к чему. «Что же это такое? – думал я. – Что все они хотят сказать?»…Роман классика современной японской литературы Харуки Мураками «Норвежский лес», принесший автору поистине всемирную известность.

Ларс Миттинг , Харуки Мураками

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Проза / Современная русская и зарубежная проза / Современная проза
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе
История Бога: 4000 лет исканий в иудаизме, христианстве и исламе

Откуда в нашем восприятии появилась сама идея единого Бога?Как менялись представления человека о Боге?Какими чертами наделили Его три мировые религии единобожия – иудаизм, христианство и ислам?Какое влияние оказали эти три религии друг на друга?Известный историк религии, англичанка Карен Армстронг наделена редкостными достоинствами: завидной ученостью и блистательным даром говорить просто о сложном. Она сотворила настоящее чудо: охватила в одной книге всю историю единобожия – от Авраама до наших дней, от античной философии, средневекового мистицизма, духовных исканий Возрождения и Реформации вплоть до скептицизма современной эпохи.3-е издание.

Карен Армстронг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература