Теория Бардина-Купера-Шриффера показала также, что сверхпроводимость – это не просто одно из состояний обычной проводимости. Раньше казалось парадоксальным, что даже лучшие из обычных проводников, медь и серебро, лишь с большой натяжкой можно назвать сверхпроводниками: они не обеспечивают сверхпроводимость, даже когда температура оказывается выше абсолютного нуля лишь на тысячную долю градуса. Однако в свете теории Бардина-Купера-Шриффера это не кажется столь уж парадоксальным. Хорошие проводники хороши именно потому, что электроны, обеспечивающие их проводимость, игнорируют пространственную решетку. Однако, обеспечивая непересекаемость пространственной решетки и путей, которыми движутся электроны, эти материалы никогда не обеспечивают шансов на образование пар Купера. Вспомните, что механизм образования пар основан исключительно на способности электронов деформировать пространственную решетку (подобно шару от боулинга, катящемуся по резиновому матрацу), что дает возможность второму электрону следовать по пути, проложенному первым электроном. Если же резиновый матрац оказывается настолько жестким, что первый шар не может проложить выемку в нем, то нет никаких шансов, что за первым шаром последует второй. Хорошие проводники оказываются плохими сверхпроводниками именно потому, что они не в состоянии образовывать пары Купера, обеспечивающие сверхпроводимость.
Наконец, теория Бардина-Купера-Шриффера объяснила, почему при определенной температуре сопротивление падает столь резко. Это во многом та же причина, по которой вода внезапно замерзает при температуре 0 °C. Оба эти процесса представляют собой фазовые переходы, победу самоорганизации над хаотической толкотней. В точке замерзания молекулы воды замедляют свое движение до степени, достаточной для того, чтобы силы притяжения связали их в кристалл. Аналогично, при температуре перехода в сверхпроводимость атомная пространственная решетка «успокаивается» до степени, достаточной для того, чтобы электроны могли образовывать пары Купера и объединяться в бозе-эйнштейновский конденсат. В обоих случаях для совершения перехода достаточно снижения температуры лишь на какую-то долю градуса.
Качественный вывод из теории Бардина-Купера-Шриффера заключался в том, что никакой из материалов не должен перейти в состояние сверхпроводимости при слишком высокой температуре – например, при температуре от 20 до 50 градусов выше абсолютного нуля, – поскольку в этом случае вибрации пространственной решетки оказались бы слишком сильными. В течение долгого времени этот вывод представлялся важным следствием из теории Бардина-Купера-Шриффера. Используя разные сочетания металлов, экспериментаторы постепенно поднимали планку этого мирового рекорда на пару десятых дол
Открытие явления высокотемпературной сверхпроводимости в 1986 г. повергло научный мир в состояние шока[139]
. Сначала появилось сообщение о неком керамическом материале, который превратился в сверхпроводник при новом температурном рекорде – 30 градусов выше абсолютного нуля. Спустя лишь два года этот рекорд взлетел на небывалую высоту – 125 градусов. На момент написания этой книги физические основы высокотемпературной сверхпроводимости остаются для нас загадкой. Принято считать, что и в этом случае пары Купера играют важную роль, которая на сей раз, возможно, опосредована магнитными взаимодействиями, а не вибрациями пространственной решетки. Как бы то ни было, несмотря на то что теория Бардина-Купера-Шриффера прекрасно «работает» при низких температурах, она не в состоянии объяснить явление сверхпроводимости во всей его полноте.