Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

7.2. Прежде чем выполнять действия в скобках, следует упростить дроби, разложив числители и знаменатели на множители.

7.3. Перед нами сумма из трех слагаемых. Если первые два привести к общему знаменателю, то в числителе произойдут существенные упрощения.

7.4. Прежде чем производить вычитание, следует упростить дробь.

7.5. Если вынести за скобки х2m, то в скобках останется x в степени, содержащей множителями m - n и 1/mn . Это упростит дальнейшие преобразования. (!)

7.6. Каждое из подкоренных выражений является полным квадратом.

7.7. Обратить внимание на то, что

9 + 42 = 8 + 42 + 1 = (22 + 1)^2.

7.8. Каждую из вторых скобок разбить на два слагаемых x^2 - u^2 и z^2 - у^2, после чего собрать все члены, содержащие множитель x^2 - u^2, и все члены, содержащие z^2 - у^2. (!)

7.9. Если обозначить левую часть через z, то, освобождаясь от радикалов, можно получить уравнение относительно z.

7.10. Равенство, которое нужно доказать, представляет собой однородное выражение седьмой степени. Возвести в степень

а

+ b + с = 0    и    а + b = -с.

7.11. Задача сводится к разбору случаев, позволяющих раскрыть знаки абсолютной величины. Количество рассматриваемых случаев можно уменьшить, если заметить, что равенство, о котором идет речь, не меняется при замене x на -x.

7.12. Можно разобрать различные случаи взаимного расположения чисел x, у и 0. Однако проще возвести каждую часть в квадрат. Так как обе части неотрицательны, то мы получим равенство, равносильное данному. (!)

7.13. Условие можно записать в виде а 1/3 + b 1/3 = -с 1/3 и возвести это соотношение в куб.

7.14. Данный трехчлен тождественно равен выражению

(ax + b)^3 - (сх + d)^3,    где    а 0, b 0, с 0, d 0.

K главе 8

8.1. Поскольку выражения, стоящие в скобках, расположены симметрично относительно значения x = 5, удобно ввести новое неизвестное у = x - 5. После того как мы раскроем скобки, произойдут значительные упрощения. (!)

8.2. Можно перемножить скобки по две, чтобы получить квадратные трехчлены, отличающиеся только свободным членом.

8.3. Если записать уравнение в виде x^2 - 17 = 3у^2, то возникает мысль доказать, что левая часть ни при каких целых x не делится на 3. (!)

8.4. Если целое у зафиксировать, то получим квадратное уравнение относительно x. Поэтому естественно обратить внимание на те ограничения, которые накладывает на у условие неотрицательности дискриминанта этого уравнения. (!)

8.5. Остаток следует искать в виде аx + b, а частное удобно обозначить через Q(x). Следуя определению деления, записать тождество.

8.6. Если переписать уравнение в виде

то благодаря условию целочисленности решений можно ограничить возможные значения у рассмотрением нескольких случаев.

8.7. Если подставить известный корень в уравнение, найти коэффициенты при рациональной и иррациональной частях, то получим систему двух уравнений для определения а и b.

8.8. Ответьте на вопрос: достаточно ли воспользоваться теоремой Виета, в силу которой свободный член и второй коэффициент должны быть положительными?

8.9. Если обозначить первый корень через x1, а знаменатель прогрессии через q

, то останется применить теорему Виета. (!)

8.10. С помощью теоремы Виета получить зависимость между 1, 2, 3 и коэффициентами данного уравнения. (!)

8.11. Разделить x^3 + аx + 1 на x -  по правилу деления многочлена на двучлен.

8.12. Ясно, что остаток нужно искать в виде аx + b. Если данный многочлен обозначить через P(x), а частное от его деления на (x - 2)(x - 3) — через Q(x), то мы сможем воспользоваться определением деления многочленов.

8.13. Если многочлен x4 + 1 разделится на x^2 + рx + q, то в частном мы получим многочлен второй степени, т. е. x^2 + аx + b.

8.14. Если данный многочлен делится на (x

- 1)^3, то после замены x - 1 = у получим многочлен, который должен делиться на у^3.

8.15. Если многочлен четвертой степени с коэффициентом 6 при старшем члене делится на x^2 - xq без остатка, то в частном обязательно получится многочлен 6x^2 + аx + b, в котором а и b определяются одновременно с p и q.

K главе 9

9.1. Точки -2, -1, 0 делят числовую ось на четыре интервала, в каждом из которых нужно решить данное уравнение. (!)

9.2. Если рассматривать значения x, обращающие в нуль числа, стоящие под знаками абсолютных величин, то придется разбить числовую ось на пять частей.

Удобнее ввести новое неизвестное у = x^2. (!)

9.3. Это уравнение четвертой степени. Следовательно, нужно найти искусственный прием, приводящий к его решению. Удобно воспользоваться тем, что слева стоит сумма квадратов.

9.4. Возвести в куб и сравнить полученное уравнение с данным.

9.5. Свести уравнение к симметрической системе, обозначив первое слагаемое левой части через u, а второе через v. (!)

9.6. Если под радикалами раскрыть скобки, то получим квадратные трехчлены, отличающиеся лишь свободным членом. Поэтому данное в условии уравнение удобно заменить системой, обозначив первое слагаемое его левой части через u, а второе через v.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже