Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

3.36. Перемещая взаимно перпендикулярные плоскости параллельно самим себе, мы не изменим проекции четырехугольника. Поэтому разместим одну из плоскостей так, чтобы она проходила через вершину четырехугольника (рис. II.3.36; эта вершина обозначена буквой А). Чтобы построить прямую, по которой пересекаются плоскости АВСD и АВ1С1D1, найдем точку E, в которой пересекаются BC и В1С1. Теперь можно измерить угол между плоскостями АВСD и АВ1С1D1, построив ВF  ЕА и соединив В1 с F. Угол ВFВ1 равен 45°.

3.38. Найти связь между радиусами шаров и величинами H,  и p можно, рассмотрев осевое сечение конуса.

3.39. Если рассмотреть осевое сечение обоих конусов, то задача станет плоской. Чтобы связать радиусы оснований конусов, в качестве вспомогательной величины удобно выбрать радиус сферы.

3.40. Сделав аналогичные построения для второй сферы, можно будет заключить, что, во-первых, треугольник О1ВО2 равнобедренный и, во-вторых, SB — высота пирамиды, объем которой мы ищем. (!!)

Так как BC (постройте этот отрезок на рис. I.3.40) (см. с. 129) — сторона основания правильной пирамиды, то можно доказать, что отрезок прямой EO1 является в треугольнике BEC одновременно медианой и биссектрисой. Это может оказаться полезным при вычислениях.

3.41. В осевом сечении, проходящем через О1 и О3, получим картину, изображенную на рис. II.3.41. Все стороны треугольника О1О3О5 нам известны (О

1О3 легко найти из рис. I.3.41) (см. с. 129). Остается определить SD и AD.

3.42. Треугольники ASD и EMK подобны, т. е. углы SAD и MEK равны. Котангенс угла SAD нам известен, так как AD = a, SD = h. (!!)

Из треугольника SDC можно найти радиус основания цилиндра, а затем из треугольника EMK определить EK.

3.43. Рассмотреть подобные треугольники SOA и SO1B, где О1 — центр куба, а B — одна из вершин диагонального сечения куба, параллельного плоскости основания конуса. Это позволит найти одно соотношение между ребром куба а, высотой конуса H и радиусом его основания R (рис. II.3.43). (!!)

Второе соотношение между H, R и а можно будет найти, рассмотрев вторую пару подобных треугольников: SO1B и SO2C. Здесь О2 — середина верхнего ребра куба, а C — одна из вершин этого ребра. Имея в распоряжении два уравнения, можно выразить R и H через а и тем самым решить задачу.

3.44. В предыдущих рассуждениях не использовано условие, согласно которому три стороны трапеции, являющейся боковой гранью пирамиды, равны b. С помощью этого условия можно найти другое выражение площади боковой грани через а и b и приравнять первому. (!!)

Решить полученное однородное уравнение относительно а/b . Остается связать величину b с радиусом вписанного шара. Для этого достаточно рассмотреть треугольник, получающийся при проецировании одной вершины верхнего основания на нижнее.

3.45. Обозначим через О1 и O

2 центры меньших шаров, через O3 — центр большего шара, через О — центр шара, радиус которого нужно найти (рис. 11.3.45); Р1 Р2, Р3, P — соответственно точки касания этих шаров с плоскостью. Радиус искомого шара обозначим через x. Тогда известны длины изображенных на рисунке отрезков: О1Р1 = O2Р2 = r, O3Р3 = R, ОР = x, O1O2 = 2r, O1O3 = O2O3 = R + r, OO1 = OO2 = r + x, OO3 = R + x. Мы считаем очевидным, что x
r. (!!)

Нужно найти соотношение, связывающее величины R, r и x. Для этого придется рассмотреть треугольник Р1Р2Р3 и вычислить длины проекций отрезков, соединяющих центры шаров. Так как шары O1 и O2 равны, то O2O3 = O1O3 и, следовательно, Р2Р3 = Р1Р3. Поэтому точка P лежит на высоте и медиане равнобедренного треугольника Р1Р2Р3.

3.46. Обозначим через O1 центр одного из двух равных шаров, а через O3 — центр меньшего шара. Пусть эти шары касаются нижней грани двугранного угла (рис. 11.3.46) в точках В и D соответственно. Прямоугольные треугольники O1АВ и O3CD имеют углы при вершинах А и С, равные /2 . Чтобы использовать факт касания шаров O

1 и O3 и наличие у них общей касательной плоскости , нужно рассмотреть треугольник O1O3F, в котором О1О3R + r (R — радиус большего шара, r — радиус меньшего шара), O1FR - r (F — проекция точки О3 на отрезок О1В). Если удастся выразить O3F через R, r и , то мы получим соотношение, позволяющее определить угол . (!!)

Отрезок O3F (см. рис. II.3.46) равен ВD, а ВD можно выразить через катеты прямоугольного треугольника ВDЕ, где E — проекция точки D на отрезок AB. Чтобы найти ЕD, нужно воспользоваться фактом касания шаров О1 и О2, сделайте на рисунке необходимые построения, рассмотрев проекцию их линии центров на плоскость .

3.47. Так как каждый из трех шаров с центрами в точках О1, О2, О3 касается боковой поверхности конуса и плоскости P, то длина перпендикуляра, опущенного из центра шара на плоскость P, равна длине перпендикуляра, опущенного из центра на ближайшую к нему образующую (рис. II.3.47).

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже