Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Способ 2. Если сократима дробь p/q , то сократима и дробь q/p.

6.9. Использовать сначала признак делимости на 4, а затем признак делимости на 9. (!)

6.10. Если условие, в силу которого число  в три раза меньше  записать символически, то получим уравнение, которое нужно будет решить в целых числах, каждое из которых расположено между 0 и 9.

6.11. Ясно, что число p нечетное. Одно значение p легко угадать — это p = 3. Есть ли другие?

6.12. Задачу удобнее решать от противного, исходя из предположения, что tg 5° = p/q , где p и q — целые.

6.13. Если меньшее из чисел не оканчивается цифрой 9, то суммы цифр этих чисел различаются на 1. Поэтому обе суммы цифр одновременно делиться на 11 не могут. Нужно искать решение среди чисел, меньшее из которых оканчивается одной или несколькими цифрами 9.

6.14. Нужно правильно использовать условие, в силу которого x и у — целые. Однородное выражение относительно неизвестных нужно оставить слева и попытаться разложить на множители, а число 17 перенести в правую часть равенства.

6.15. Данное уравнение таково, что если x = а, у = b — его решение, то существуют еще три решения: (−а

, b), (а, −b), (−а, −b), если а ≠ b.

6.16. Преобразовать исходное условие к виду 11(4x − 1) = 69(уx) и воспользоваться тем, что x и у — натуральные числа.

K главе 7

7.1. Обе двойки представить как 3 − 1 и сгруппировать члены так, чтобы в числителе можно было вынести за скобки n + 1, а в знаменателе n − 1.

7.2. Прежде чем выполнять действия в скобках, следует упростить дроби, разложив числители и знаменатели на множители.

7.3. Перед нами сумма из трех слагаемых. Если первые два привести к общему знаменателю, то в числителе произойдут существенные упрощения.

7.4. Прежде чем производить вычитание, следует упростить дробь.

7.5. Если вынести за скобки х2m, то в скобках останется x в степени, содержащей множителями mn и 1

/mn . Это упростит дальнейшие преобразования. (!)

7.6. Каждое из подкоренных выражений является полным квадратом.

7.7. Обратить внимание на то, что

9 + 4√2 = 8 + 4√2 + 1 = (2√2 + 1)².

7.8. Каждую из вторых скобок разбить на два слагаемых x² − u² и z² − у², после чего собрать все члены, содержащие множитель x² − u², и все члены, содержащие z² − у². (!)

7.9. Если обозначить левую часть через z, то, освобождаясь от радикалов, можно получить уравнение относительно z.

7.10. Равенство, которое нужно доказать, представляет собой однородное выражение седьмой степени. Возвести в степень

а + b + с = 0    и    а + b = −с.

7.11. Задача сводится к разбору случаев, позволяющих раскрыть знаки абсолютной величины. Количество рассматриваемых случаев можно уменьшить, если заметить, что равенство, о котором идет речь, не меняется при замене x на −x.

7.12.

Можно разобрать различные случаи взаимного расположения чисел x, у и 0. Однако проще возвести каждую часть в квадрат. Так как обе части неотрицательны, то мы получим равенство, равносильное данному. (!)

7.13. Условие можно записать в виде а+ b = −с и возвести это соотношение в куб.

7.14. Данный трехчлен тождественно равен выражению

(ax + b)³ − (сх + d)³,    где    а > 0, b > 0, с > 0, d > 0.

K главе 8

8.1. Поскольку выражения, стоящие в скобках, расположены симметрично относительно значения x = 5, удобно ввести новое неизвестное у = x − 5. После того как мы раскроем скобки, произойдут значительные упрощения. (!)

8.2. Можно перемножить скобки по две, чтобы получить квадратные трехчлены, отличающиеся только свободным членом.

8.3. Если записать уравнение в виде x² − 17 = 3у

², то возникает мысль доказать, что левая часть ни при каких целых x не делится на 3. (!)

8.4. Если целое у зафиксировать, то получим квадратное уравнение относительно x. Поэтому естественно обратить внимание на те ограничения, которые накладывает на у условие неотрицательности дискриминанта этого уравнения. (!)

8.5. Остаток следует искать в виде аx + b, а частное удобно обозначить через Q(x). Следуя определению деления, записать тождество.

8.6. Если переписать уравнение в виде

то благодаря условию целочисленности решений можно ограничить возможные значения у рассмотрением нескольких случаев.

8.7. Если подставить известный корень в уравнение, найти коэффициенты при рациональной и иррациональной частях, то получим систему двух уравнений для определения а и b.

8.8. Ответьте на вопрос: достаточно ли воспользоваться теоремой Виета, в силу которой свободный член и второй коэффициент должны быть положительными?

8.9. Если обозначить первый корень через x1, а знаменатель прогрессии через q, то останется применить теорему Виета. (!)

8.10. С помощью теоремы Виета получить зависимость между α1, α2, α3 и коэффициентами данного уравнения. (!)

8.11. Разделить x³ + аx + 1 на x − α по правилу деления многочлена на двучлен.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература