Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

8.12. Ясно, что остаток нужно искать в виде аx + b. Если данный многочлен обозначить через P(x), а частное от его деления на (x − 2)(x − 3) — через Q(x), то мы сможем воспользоваться определением деления многочленов.

8.13. Если многочлен x4 + 1 разделится на x² + рx + q, то в частном мы получим многочлен второй степени, т. е. x² + аx + b.

8.14. Если данный многочлен делится на (x − 1)³, то после замены x − 1 = у получим многочлен, который должен делиться на у³.

8.15. Если многочлен четвертой степени с коэффициентом 6 при старшем члене делится на x² − xq без остатка, то в частном обязательно получится многочлен 6x² + аx + b, в котором а и b

определяются одновременно с p и q.

K главе 9

9.1. Точки −2, −1, 0 делят числовую ось на четыре интервала, в каждом из которых нужно решить данное уравнение. (!)

9.2. Если рассматривать значения x, обращающие в нуль числа, стоящие под знаками абсолютных величин, то придется разбить числовую ось на пять частей.

Удобнее ввести новое неизвестное у = x². (!)

9.3. Это уравнение четвертой степени. Следовательно, нужно найти искусственный прием, приводящий к его решению. Удобно воспользоваться тем, что слева стоит сумма квадратов.

9.4. Возвести в куб и сравнить полученное уравнение с данным.

9.5. Свести уравнение к симметрической системе, обозначив первое слагаемое левой части через u, а второе через v. (!)

9.6. Если под радикалами раскрыть скобки, то получим квадратные трехчлены, отличающиеся лишь свободным членом. Поэтому данное в условии уравнение удобно заменить системой, обозначив первое слагаемое его левой части через u, а второе через v.

9.7. Поскольку неизвестное входит в уравнение либо в сочетании xb, либо в сочетании аx, то удобно ввести обозначения   и получить систему алгебраических уравнений.

9.8. Ввести вспомогательное неизвестное у и свести решение данного уравнения к решению системы уравнений относительно x и у.

9.9. Перенести  в правую часть уравнения и возвести обе части в квадрат.

9.10. Чтобы избавиться от знаков абсолютной величины, можно поступить двояко: либо потребовать, чтобы правая часть уравнения была неотрицательной, и решить уравнения

x² − 3x/2 − 1 = −x

² − 4x + β,    x² − 3x/2 − 1 = x² + 4x − β;

либо рассмотреть два случая: в первом выражение, стоящее под знаком абсолютной величины, неотрицательно, а во втором — отрицательно.

9.11. Рассмотреть различные случаи расположения x и у по отношению к нулю (всего придется рассмотреть четыре случая). (!)

9.12. Решить систему уравнений с параметром k, а затем решить систему неравенств. (!)

9.13. Рассмотреть различные случаи взаимного расположения чисел x и у и чисел x и −у. Это позволит раскрыть знаки абсолютной величины. (!)

9.14. Второе уравнение — уравнение окружности радиуса √а . Нарисовать кривую, которая определяется первым уравнением.

9.15. Одно решение очевидно: x = у = 0. Если ху ≠ 0, то можно разделить первое уравнение на ху, а второе на x²у².

9.16. Если бы во втором и третьем уравнениях не было коэффициентов 2 и 3, то уравнения системы получались бы друг из друга с помощью циклической перестановки неизвестных x, у и z. Однако влияние коэффициентов оказывается столь сильным, что попытка использовать это свойство системы не приводит к успеху. Попытайтесь преобразовать систему в распадающуюся, для чего потребуется отыскать алгебраическое выражение, общее для двух уравнений, и исключить его.

9.17. Если первое уравнение системы записать в виде x

+ у = −z и возвести в квадрат, то с помощью второго ее уравнения можно найти ху.

9.18. Сопоставьте первое и последнее уравнения. Если записать их в виде

x + у = 1 − z,    х³ + у³ = 1 − z³,

то напрашивается способ, с помощью которого можно преобразовать систему в распадающуюся.

9.19. Если раскрыть скобки, то получим систему линейных уравнений относительно u = x + у + zv = хуxz + yz, w = xyz. Найдя uv и w, можно вычислить х³ + у³ + z³, если возвести x + у + zu

в куб: u³ = х³ + у³ + z³ + 3uv − 3w.

Однако такой путь решения, хотя и прост по идее, требует значительных выкладок. Решение можно упростить, если ввести в рассмотрение многочлен M(t) = (tx)(tу)(tz) + а, который в силу условия задачи имеет корни t = а, t = b, t = с.

9.20. Первые два уравнения системы симметричны относительно x и у. Нужно использовать эту симметрию для того, чтобы получить одинаковые правые части у этих двух уравнений.

9.21. Если второе уравнение возвести в квадрат, то можно сравнить два выражения для (x + у)². (!)

9.22. В первое уравнение входит у, в последующие уt, yt² и yt³ соответственно. Эта закономерность позволяет исключить у.

9.23. Каждый элемент, стоящий в левой части второго уравнения, получается из соответствующего элемента, стоящего в левой части первого уравнения, возведением в квадрат. Нужно использовать это свойство системы.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература