В Нобелевской речи Раман всячески стремился отдать должное своим коллегам. Одному из них, Венкатесварану, и принадлежит важнейшее наблюдение: когда в качестве жидкости был использован глицерин, а не вода, опалесценция приобрела ярко зеленый цвет, хотя падающий свет был синим. Иными словами, свет не просто рассеивается в растворе – как слабый раствор молока в воде, которое не меняет цвет. Раману и его коллегам нужен был более интенсивный источник света, чтобы наблюдать рассеянный свет, поэтому они построили специальный телескоп семи дюймов в диаметре. Этот инструмент они использовали так, как ни в коем случае не рекомендуют его использовать новичкам, а именно направляли на Солнце. Но он помог им сделать открытие: оказывается, рассеянный свет «следует» за цветом падающего света, но всегда на некотором расстоянии, как хористы ведут мелодическую партию на большую терцию ниже солиста. Раман с коллегами быстро выяснил, что интервал между ними варьируется в соответствии с субстанцией и, таким образом, должен быть свойством самой субстанции, а не падающего солнечного света. Затем они воспользовались недавно изобретенной ртутной лампой, которая, в отличие от раскаленных тел (типа Солнца), излучающих в широком диапазоне частот, испускает свет строго определенной длины волны[55]
. И увидели нечто поразительное.Когда им удалось сфотографировать первые спектры рассеянного света, они увидели, что он состоит из различных «линий», и что положение и интенсивность каждой линии зависит от используемой жидкости. Более того, линии всегда делали то, что и полагается делать опалесценции, а именно – звучали в фиксированной гармонии с падающим светом. Раман вскоре понял, что это значит:
Молекулярные аккорды
Каждое колебание молекулы дает свою линию в Рамановском спектре. Самое главное здесь вот что: каждое химическое соединение определяется набором атомов, связанных друг с другом. Молекулярные колебания – как танцевальные движения: в некоторых задействована только часть молекулы (вспомните движения головой в индийских танцах), другие вызывают гибкие движения всей молекулы (вспомните нескромные 1970-е). Если сложить все различные виды колебаний, которые испытывает молекула, окажется, что они находятся в простом соотношении с количеством ее атомов. Молекула с N атомами имеет 3N способа движений: типичная молекула запаха, скажем, с двадцатью атомами будет способна совершать шестьдесят танцевальных па, или колебательных движений. Спектр колебаний подобен клавиатуре, где нижняя половина (1970-е) занята колебаниями, в которых принимают участие большинство атомов молекулы. Верхняя половина (индийский танец) – это то, где располагаются все характерные черты химических групп. Разумно предположить, что точный перечень колебаний будет зависеть от точной структуры молекулы. По определению, форма соединенных атомов уникальна. Следовательно, не стоит удивляться, что форма колебаний тоже уникальна. На самом деле, это справедливо до такой степени, что точные измерения молекулярных колебаний дают, так сказать, «отпечаток пальца» молекулы. Если вы видели его раньше и знаете структуру, вы можете моментально ее идентифицировать. Для уточнений и сравнений существуют библиотеки с тысячами записей спектров. Кстати сказать, если по структуре можно определить характер колебаний, то обратную задачу решить невозможно: нельзя по характеру колебаний определить структуру.
Нос может служить настоящим спектроскопом.