Таким образом можно провести прекрасный тест и проверить, на что реагируют наши обонятельные рецепторы: на форму или колебания. Надо взять две молекулы идентичной формы, но с разными колебаниями. Впрочем, как обычно, дьявол – в деталях. Какую молекулу выбрать, и какие элементы заменить их более тяжелыми изотопами? Как можно предположить, более легкие элементы сильнее подвержены воздействию дополнительных нейтронов, и более всего самый легкий – водород. Более тяжелые звери, типа углерода и кислорода, появляются в разных изотопных ароматах, но добавление нейтрона к двенадцати ядерным частицам обычного углерода увеличит его массу на одну тринадцатую часть, или изменение произойдет лишь на 8 %. Значит, водород годится. Однако надо внимательно выбрать, какие атомы водорода в каких молекулах заменить дейтерием. Многие атомы водорода имеют свободную связь с соседним атомом и постоянно скачут туда-сюда, как цирковые наездники. Возьмем, к примеру, D2
S, тяжелый аналог H2S. Создать ее несложно, и она будет наверняка иметь совершенно иной характер колебаний по сравнению с H2S, но если ее понюхать, D моментально будет вытеснен H, находящимся во влажной среде вашего носа – в течение наносекунд. Дело в том, что в вашем организме (если вы перед этим не выпили большое количество тяжелой воды), почти весь водород будет легким, и когда D совершит очередной прыжок, его место займет гораздо более распространенный Н. Результат: эксперимент провалился.Тем не менее в молекулах есть много стабильных атомов водорода, и Райт мог заняться подходящими ароматами с замещенными изотопами. Он так и сделал, и результат описан в одной из глав его книги. Он попросил людей понюхать нормальный и дейтерированный нафталин, после чего радостно сообщил, что они чувствовали разные запахи. Звучит обнадеживающе? Не совсем. Различие было не сильным, но по этому эксперименту нельзя было сделать точного заключения. Причина – жупел всех экспериментов с запахами: чистота. Даже малейшее количество каких-то молекул, не имеющих отношения к главному компоненту, может повлиять на запах в целом. Такое происходит в лабораториях, когда две последовательные партии одного одоранта, изготовленные в «идентичных» условиях, обладают слегка различающимся запахом из-за слегка различающихся синтетических примесей. Дейтерированные соединения часто создаются совершенно другими способами, чем нормальные, из-за ограниченной доступности строительных блоков дейтерия, поэтому не исключена возможность загрязнения их различными примесями, которые и без того имеют различные запахи. Наш нос в качестве измерительного инструмента просто слишком хорош, чтобы проверять теорию таким способом.
Что надо было сделать Райту? Единственный способ сделать все надлежащим образом – поместить обе молекулы в газовый хроматограф и проверять пики компонентов молекулы на выходе. Для этого требуется: а) хромато-масс-спектрометр, прибор, как тогда, так и сейчас, редко встречающийся за пределами мира парфюмерии; б) умение быстро определять запах пика и запоминать его качества (десять секунд на все про все); и в) умение запоминать все свойства до следующего эксперимента, когда появятся пики другой молекулы. Помимо наличия оборудования, это все равно гораздо сложнее, чем просто сравнить «А» и «Б» с помощью блоттеров, поочередно подносимых к носу. Не менее сложно проводить широкомасштабные эксперименты с газовой хроматографией на больших группах неопытных наблюдателей, которых так любят психологи-экспериментаторы[67]
. Конечно, нет ничего невозможного, но в данных обстоятельствах эксперименты Райта с изотопами никого не убедили даже в том, что их можно было бы провести лучше.Опять зеркала
Вторая плохая новость касается энантиомеров, зеркальных молекул, о которых шла речь выше. Потребовалось поразительно долгое время, чтобы окончательно определить, различаются ли энантиомеры по запаху. Причина попросту в том, что энантиомеры по своей природе обычно обладают очень похожими свойствами, потому что точка кипения, молекулярный вес и пр. у них по определению идентичны. Запустите смесь энантиомеров в газовый хроматограф, и они выйдут на другом конце, улыбаясь, держась за руки, как идентичные близнецы, и в одно и то же время[68]
. Единственный способ разделить их – это подвергнуть кристаллизации. Если кристаллизовать энантиомеры и сохранить мелкие кристаллы, можно обнаружить, что кристаллы получаются одной или другой формы. Дело в том, что если вы используете пространственную решетку для левосторонних, то правосторонние в нее не пролезут. Это открытие сделало знаменитым молодого Луи Пастера, но требуется кропотливое ручное разделение мелких кристаллов пинцетом. Синтез энантиомеров в принципе не легче, потому что приходится начинать с энантиомерных строительных блоков, а они должны быть чистыми, и т. д.