На непрерывных множествах могут быть заданы функции разных видов. Разбиение таких множеств на подмножества может происходить в точках, где функция имеет разрыв, или в малых областях, где ее градиент велик и превышает некоторое пороговое значение [23]. В ряде случаев математические условия разбиения, границы между подмножествами могут восприниматься человеком, - например, выделение контуров и их разбиение на части при зрительном восприятии. Разбивающими могут служить особые точки функции перегиба, максимума, минимума и т. д. Иногда ими оказываются значения непрерывной функции, соответствующие целочисленным или натуральным значениям ее аргумента. Но возможны и случаи, когда ни один из перечисленных принципов квантования не "работает". Тогда фиксируется два крайних противоположных значения функции, которые и принимаются за дискретные характеристики множества. Так приходится поступать при решении задач типологии. Примером могут служить распределения людей в данной выборке по показателям экстраверсии - интроверсии и нейротизма. При независимости показателей число выделяемых крайних типов соответственно увеличивается.
II. 2. 2. От единого к множеству. Из одного все образуется различными путями. Единица (одно) может делиться и может умножаться. В обоих случаях единица порождает многое, из одного элемента возникает множество. Разбитие целого на части можно производить при помощи деления и вычитания, создать многообразие из элементов можно с помощью сложения и умножения. Существует много конкретных реализаций процессов сложения, вычитания, умножения и деления, - например, сложение чисел, векторов, бесконечно малых величин, логическое сложение и т. д. Простейшими (но и важнейшими!) движениями от одного ко всему являются процессы раздвоения и удвоения целого. "Раздвоение единого и познание противоречивых частей его... есть суть (одна из "сущностей", одна из основных, если не основная, особенностей его черт) диалектики".*(*Ленин В. И. Полн. собр. соч., т. 29, с. 316.)
Раздвоение единого представляет собой частный, но самый важный случай анализа одного, единого, целого. "Из одного -все, и из всего одно", - этот тезис показывает, что раздвоению противостоит объединение двух в одно. Частным, но принципиальным случаем является объединение противоположностей по Гераклиту, гармония состоит из противоположностей (мужское и женское и т. д.) [36].
II. 2. 3. Раздвоение единого. На практике единое всегда является единым множеством. Действительно, целостную геометрическую фигуру всегда можно представить как связное множество точек; понятие характеризуется прежде всего объемом и содержанием, которые тоже являются множествами: первое - множеством объектов данного класса, второе - множеством признаков класса. Поэтому, когда нужно разделить единое практически, мы всегда имеем дело с раздвоением множества. Любое реальное множество допускает большое число раздвоений. Чтобы уменьшить это число, необходимо ввести ограничения, которые могут сократить число вариантов, оставить единственное решение или даже сделать раздвоение невозможным (например, невозможно раздвоить круг при ограничении принципа повторяемости целого в частях).
раздвоение целого на диалектические пары тоже может быть не единственным. Множество может быть "полидиполюстным". Тогда возможно несколько последовательных диалектических дихотомий, причем их порядок определяется задачей. Такие дихотомии множества могут быть симметричными и ассиметричными.
II. 2. 4. Раздвоение математических объектов. Рассмотрим более конкретное раздвоение множеств, геометрических фигур и других математических объектов.
--------Картинка стр. 31------
Рис. 2. Раздвоение нечеткого множества.
----------------------
А. Раздвоение множеств. Эта процедура включает в себя следующие способы реализации:
1. Разбиение множества на два непересекающихся подмножества (класса) на основе отношения эквивалентности.
2. Выделение подмножества в множестве на основе отношения включения, которое является частным случаем отношения порядка.
3. Разбиение множества на непересекающиеся подмножества, когда:
а) исходное множество ограничено и его подмножества также ограничены;
б) исходное множество неограниченно и его подмножества также неограниченны.
4. Раздвоение размытых множеств. Пусть размытое множество описывается градусным распределением. Тогда процесс его раздвоения можно представить графически (рис. 2). Процесс происходит непрерывно, но может быть зафиксирована граница перехода от одного в два.
Б. Раздвоение геометрических фигур. Плоскость можно раздвоить на области двумя способами. Любая прямая делить плоскость на две полуплоскости. Замкнутая линия делит плоскость на ограниченную и неограниченную области (рис. 3, А). В результате разделения плоскости прямой линией получаем две полуплоскости, при втором способе деления противоположность состоит в ограниченности и неограниченности полученных частей.
-----------Картинка стр. 32------
Рис. 3. Раздвоение геометрических объектов.