1 См. Локк Д. Избр. философск. произв., т. 1, с. 227. — 358.
2 Изменив подлежащее изменению (лат.). — 358.
3 Бесконечно малые части (лат.). — 358.
539
4 Бесконечно малые бесконечно малых [т. е. бесконечно малые высших порядков] (лат.) — 358.
5 Здесь Беркли придерживался точки зрения Локка, согласно которой всем словам должны соответствовать определенные идеи. Позднее он пришел к взгляду, что без помощи идей возможно познание духов и что некоторые слова могут иметь чисто эмоциональное значение. См. также прим. к фрагменту 592 «Философских заметок». —358.
6 Произвольно малая величина (лат.). — 358.
7 Возвратных последовательностей (лат.). — 358.
8 Бесконечно малая часть (лат.). —358'
9 Нъювентейт Бернард (Nieuentiit, или Nieuwentyt Bernard, 1654—1718), голландский математик, критиковавший Лейбница; автор написанной на французском языке работы «Анализ бесконечных» (1695), которую Беркли здесь имеет в виду. — 559.
10 Дифференциалы дифференциалов (лат.). — 359.
11 Если каким-либо образом к точкам одной линии присоединить точки другой линии, то величина не изменится (лат.). — 559.
11 Чрезмерная скрупулезность является помехой искусству открытия (лат.). — 360.
13 Шайен Джордж (Cheyne George, 1671—1743), английский врач и математик. Данная транскрипция его имени наиболее известна в литературе. —360.
14 Дифференциальное исчисление (лат.). — 560.
16 [Посредством] сведения к нелепости (лат.). — 360.
16 Рвфсон Джоаеф (Raphson Joseph), английский математик XVIII в., член Лондонского королевского общества. Работа Рэфсона «О реальном пространстве, или бесконечном существе», на которую ссылается Беркли, была написана в 1697 г. — 560.
17 Как бы протяженная (лат.). —560.
18 Как бы протяженной частью непрерывного (лат.). — 560.
АНАЛИТИК, ИЛИ РАССУЖДЕНИЕ, АДРЕСОВАННОЕ НЕВЕРУЮЩЕМУ МАТЕМАТИКУ, ГДЕ
ИССЛЕДУЕТСЯ, ЯВЛЯЕТСЯ ЛИ ПРЕДМЕТ, ПРИНЦИПЫ и ЗАКЛЮЧЕНИЯ СОВРЕМЕННОГО АНАЛИЗА БОЛЕЕ ОТЧЕТЛИВО ПОЗНАВАЕМЫМИ
И С ОЧЕВИДНОСТЬЮ ВЫВОДИМЫМИ, ЧЕМ РЕЛИГИОЗНЫЕ ТАИНСТВА и ПОЛОЖЕНИЯ ВЕРЫ
THE ANALYST OR A DISCOURSE
ADDRESSED TO AN INFIDEL MATHEMATICIAN WHEREIN
IT IS EXAMINED WHETHER THE OBJECT, PRINCIPLES
AND INFERENCES OF THE MODERN ANALYSIS
ARE MORE DISTINCTLY CONCEIVED,
OR MORE EVIDENTLY DEDUCED, THAN RELIGIOUS MYSTERIES AND POINTS OF FAITH
Трактат был опубликован одновременно в Лондоне и Дублине в 1734 г. Предполагают, что под неверующим математиком имелся в виду знаменитый английский астроном, сподвижник Ньютона Эд-монд Халли (Галлей) (Halley Edmond, 1656—1742). Хотя в «Аналитике...» специально исследуется ньютоновская математическая концепция флюксий, главная цель, которую преследует автор, несомненно, сугубо философская. Беркли объявляет флюксии всех порядков мистическими сущностями, которые невозможно ни воспринимать, ни воображать, и на этом основании отвергает их. Также отрицательно относится он и к понятиям, которыми в дифференциальном исчислении пользовался Лейбниц.
Беркли стремится доказать коренную логическую ошибочность и противоречивость рассуждений математиков о бесконечно малых величинах, используя то, что исходные понятия математического анализа в то время (да и долго спустя) оставались неуточненными (см. вступительную статью С. А. Яновской к изданию: «Математические рукописи К. Маркса». М., 1968). «Аналитик...» вызвал острую дискуссию среди британских математиков XVIII в., которая продолжалась несколько лет. Понятие «бесконечно малой» величины действительно некорректно, хотя могут быть построены исчисления (например, «нестандартный анализ» А. Робинсона), оперирующие этим понятием непротиворечиво.