Мы только что доказали немыслимость линии, разбирая знак точки. Но можно и непосредственно устранить ее, разобрав собственное ее понятие. Именно, геометры говорят, что линия есть длина без ширины, а мы, скептики, не можем понять длины, не имеющей ширины, ни в чувственном, ни в умопостигаемом. Ведь какую бы чувственную длину мы ни воспринимали, мы воспринимаем ее с некоторой шириной. Поэтому в области чувственного невозможно никакое тело без ширины. Невозможно представить себе такую длину и 'в области умопостигаемого. Ведь хотя мы можем мыслить одну длину уже другой, однако когда мы, сохраняя ту же длину, понемногу расщепляем мысленно ширину и делаем это до известного предела, то мы мыслим, что ширина становится все меньше и меньше; когда же мы вздумаем сразу лишить длину ширины, то мы уже не мыслим также и длины, но с упразднением ширины упраздняется и понятие о длине.
307
Кроме того, вообще все мыслимое мыслится или на основании появления очевидных [признаков], или на основании исхождения от очевидного. И это происходит разнообразно: то по сходству, то по присоединению, то по аналогии (и притом или увеличительной, или уменьшительной). На основании появления очевидных [признаков] мыслится, например, белое и черное, сладкое и горькое. Ведь они хотя и чувственны, тем не менее мыслятся. На основании исхождения от очевидного мыслится уподобительно - например, на основании изображения Сократа - отсутствующий Сократ. Соединительно же - например, на основании человека и коня - ни человек, ни конь, а сложенный из обоих гиппокентавр. По аналогии, увеличительной или уменьшительной, - например, от наружности обыкновенного по росту человека, увеличив в воображении [обычно] встречающегося нам, - мы измыслили киклопа, который не сходен
Был с человеком, вкушающим хлеб, и казался лесистой
Дикой вершиной горы [98],
а уменьшивши, составили понятие о пигмее. При наличии стольких методов мысли если линия мыслится как длина без ширины, то, очевидно, она должна мыслиться каким-нибудь из этих методов. Но она не может мыслиться ни по одному из них, как мы покажем, поэтому она немыслима. На основании появления очевидного не может возникнуть понятия о какой-либо длине без ширины, поскольку в видимых и ясных предметах мы не найдем никакой длины без ширины. Однако на основании перехода от очевидного опять-таки невозможно вообразить себе длину без ширины, равно как и на основании сходства, поскольку в области очевидного мы не находим длины без ширины, чтобы мыслить похожую на это какую-нибудь длину помимо ширины. Ведь она должна походить на что-либо познаваемое и видимое. Но так как мы не имеем явно встречающейся длины помимо ширины, то мы не сможем понять существования подобной ей длины без ширины. Это неприемлемо также и на основании присоединения: пусть они скажут нам, какие фактически встречаются очевидные признаки, в соединении с какими они получают понятие длины без ширины? Сказать это они не будут в состоянии.
308
Далее, понятие длины без ширины не появилось и по аналогии. Ведь то, что мыслится по аналогии, имеет нечто общее с тем, на основании чего оно мыслится. Например, на основании обыкновенного роста человека через увеличение мы измыслили киклопа и на основании того же самого, но через уменьшение в свою очередь - пигмея. Поэтому, если есть нечто общее у того, что мыслится по аналогии, с тем, на основании чего оно мыслится, и если, с другой стороны, мы не находим ничего общего между длиною без ширины и длиною с шириной, чтобы, отправляясь от последней, мы могли бы измыслить длину без ширины, то, следовательно, она не мыслится и по аналогии. Отсюда вытекает, что если каждое мыслимое должно мыслиться по какому-либо из предложенных методов, а мы доказали, что длина без ширины не может мыслиться ни по одному на них, то следует сказать, что длина без ширины немыслима.
Но может быть, кто-нибудь скажет, что, приняв некоторую длину с некоторой шириной, мы мыслим длину без ширины по принципу усиления свойства (###). Ведь если ширина понемногу уменьшается, то она придет и к исчезновению, так что уменьшение закончится длиной без ширины. Но во-первых, мы доказали, что полное упразднение ширины есть и уничтожение длины. Затем, то, что мыслится по усилению, не отличается от ранее мыслимого, но есть оно само, только в усиленной степени. Поэтому если на основании имеющего некоторую ширину мы желаем понять по принципу усиления узости, то мы вовсе не помыслим длину без ширины (ибо они разнородны), но постоянно будем получать ширину все уже и уже, так что конечный пункт мысли остановится на наименьшей ширине, а после этого произойдет переход в разнородное, и именно ввиду уничтожения длины вместе с уничтожением ширины.