Читаем Сочинения в двух томах. Том 1 полностью

Действительно, когда говорится, что, как единица относится к а, или к данному числу 5, так b, или данное число 7, относится к искомому, которое равно ab, или 35, тогда а и Ь находятся на второй ступени, и ab, являющееся их произведением, — на третьей. Равным образом, когда добавляют, что, как единица относится к с, или 9, так ab, или 35, относится к искомому аbс, или 315, тогда abc находится на четвертой ступени и получается посредством двух действий умножения ab на с, т. е. величин, находящихся на второй ступени, и т. д. Равным образом, как единица относится к а, (или) 5, так а, (или) 5, относится к а2, или 25; и опять-таки как единица относится к (а, или) 5, так а2, (или) 25, относится к а3, (или) 125; и, наконец, как единица относится к а, (или) 5, так а3

, (или) 125, относится к а4, т. е. к 625, и т. д.: ведь когда одна и та же величина умножается на саму себя, умножение производится так же, как и тогда, когда она умножается на другую, совершенно отличную от нее величину.

Когда же теперь говорится, что, как единица относится к а, или 5, данному делителю, так В, или искомое число 7, относится к ab, или 35, данному делимому, тогда порядок является обратным и косвенным, вследствие чего искомое В не может быть получено иначе, кроме как посредством деления данного ab на а, также данное. Равным образом, когда говорится, что, как единица относится к А, или искомому числу 5, так А, или 5, искомое, относится к а2, или 25, данному; или же как единица относится к А, (или) 5, искомому, так А2, или 25, искомое, относится к а3

, или 125, данному, и т. д. Все это мы охватываем названием «деление», хотя следует отметить, что последние из примеров такого вида заключают в себе большее затруднение, чем первые, ибо в них чаще встречается искомая величина, которая поэтому предполагает многие отношения. Ведь смысл этих примеров тот же самый, как если бы было сказано, что надо извлечь квадратный корень из а, или <из> 25, либо кубический из а3, или из 125, и т. д.; такой способ выражения употребителен у счетчиков. Или, если объяснить их также в терминах геометров, это то же самое, как если бы было сказано, что надо найти среднюю пропорциональную между той принятой величиной, которую мы называем единицей, и той, которая обозначается а2, либо две средние пропорциональные между единицей и а3, и т. д.

Из этого легко сделать вывод о том, каким образом двух названных действий достаточно для отыскания любых величин, которые должны быть выведены из других величин благодаря какому-либо отношению. После того как мы поняли это, нам следует изложить, каким образом эти действия должны быть рассмотрены воображением и каким образом они должны также предстать перед глазами, для того чтобы затем мы наконец объяснили их использование, или применение.

Если нужно произвести сложение или вычитание, мы представляем себе предмет в виде линии или в виде протяженной величины, в которой должна быть рассмотрена только длина: действительно, если нужно прибавить линию


мы прикладываем одну линию к другой под прямым углом таким образом:

и получается прямоугольник



Наконец, при делении, в котором дан делитель, мы воображаем, что делимая величина представляет собой прямоугольник, одна сторона которого является делителем, а другая — частным; так, если прямоугольник ab нужно разделить на а,

из него убирают ширину а, и остается b в качестве частного:. Или, наоборот, если тот же прямоугольник делят на b, то убирают высоту b, и а будет частным:.

Что же касается тех делений, в которых делитель не дан, а только обозначен через посредство какого-либо отношения, как, например, когда говорится, что нужно извлечь квадратный или кубический корень и т. д., то следует отметить, что в этих случаях и подлежащий делению, и все другие термины нужно всегда представлять себе как линии, расположенные в ряде непрерывно пропорциональных величин, первой из которых является единица, а последней — делимая величина. О том, каким образом между этой величиной и единицей должно быть найдено сколько угодно средних пропорциональных, будет сказано в своем месте. Теперь же достаточно уведомить, что здесь, как мы предполагаем, подобные действия еще не были доведены до совершенства, так как они должны производиться при посредстве непрямых и обратных актов воображения, а сейчас мы говорим только о вопросах, которые следует обозревать прямо.

Перейти на страницу:

Все книги серии Философское наследие

Опыты, или Наставления нравственные и политические
Опыты, или Наставления нравственные и политические

«Опыты, или Наставления нравственные и политические», представляющие собой художественные эссе на различные темы. Стиль Опытов лаконичен и назидателен, изобилует учеными примерами и блестящими метафорами. Бэкон называл свои опыты «отрывочными размышлениями» о честолюбии, приближенных и друзьях, о любви, богатстве, о занятиях наукой, о почестях и славе, о превратностях вещей и других аспектах человеческой жизни. В них можно найти холодный расчет, к которому не примешаны эмоции или непрактичный идеализм, советы тем, кто делает карьеру.Перевод:опыты: II, III, V, VI, IX, XI–XV, XVIII–XX, XXII–XXV, XXVIII, XXIX, XXXI, XXXIII–XXXVI, XXXVIII, XXXIX, XLI, XLVII, XLVIII, L, LI, LV, LVI, LVIII) — З. Е. Александрова;опыты: I, IV, VII, VIII, Х, XVI, XVII, XXI, XXVI, XXVII, XXX, XXXII, XXXVII, XL, XLII–XLVI, XLIX, LII–LIV, LVII) — Е. С. Лагутин.Примечания: А. Л. Субботин.

Фрэнсис Бэкон

Европейская старинная литература / Древние книги

Похожие книги

Homo ludens
Homo ludens

Сборник посвящен Зиновию Паперному (1919–1996), известному литературоведу, автору популярных книг о В. Маяковском, А. Чехове, М. Светлове. Литературной Москве 1950-70-х годов он был известен скорее как автор пародий, сатирических стихов и песен, распространяемых в самиздате. Уникальное чувство юмора делало Паперного желанным гостем дружеских застолий, где его точные и язвительные остроты создавали атмосферу свободомыслия. Это же чувство юмора в конце концов привело к конфликту с властью, он был исключен из партии, и ему грозило увольнение с работы, к счастью, не состоявшееся – эта история подробно рассказана в комментариях его сына. В книгу включены воспоминания о Зиновии Паперном, его собственные мемуары и пародии, а также его послания и посвящения друзьям. Среди героев книги, друзей и знакомых З. Паперного, – И. Андроников, К. Чуковский, С. Маршак, Ю. Любимов, Л. Утесов, А. Райкин и многие другие.

Зиновий Самойлович Паперный , Йохан Хейзинга , Коллектив авторов , пїЅпїЅпїЅпїЅпїЅ пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ

Биографии и Мемуары / Культурология / Философия / Образование и наука / Документальное