Читаем Сочинения в двух томах. Том 1 полностью

Что касается других действий, то они, конечно, весьма легко могут быть осуществлены тем способом, которым, как мы сказали, их надлежит понимать. Вместе с тем остается изложить, каким образом должны быть подготовлены используемые в них термины; ибо, хотя, впервые занимаясь каким-либо затруднением, мы вольны представлять себе его термины как линии или как прямоугольники и никогда не приписывать этим терминам других фигур, как было сказано в четырнадцатом правиле, тем не менее в рассуждении часто бывает, что прямоугольник, после того как он был образован умножением двух линий, затем следует представлять себе в виде линии, для того чтобы выполнить другое действие, либо тот же самый прямоугольник или линию, полученную в результате какого-то сложения или вычитания, затем следует представлять себе как некоторый другой прямоугольник, построенный на обозначенной линии, которой он должен быть разделен.

Итак, здесь стоит изложить, каким образом всякий прямоугольник можно преобразовать в линию и в свою очередь линию или даже прямоугольник — в другой прямоугольник, сторона которого обозначена. Это весьма легко сделать геометрам, если только они заметят, что в виде линий, всякий раз когда мы, как здесь, сравниваем их с каким-либо прямоугольником, мы неизменно представляем себе прямоугольники, одна сторона которых является той длиной, какую мы приняли за единицу. Ведь тогда вся эта задача сводится к положению такого вида: по данному прямоугольнику построить другой, равный ему, на данной стороне.

Хотя это действие известно даже новичкам в геометрии, тем не менее мне хочется объяснить его, чтобы не показалось, будто я что-либо упустил.

Правило XIX

Посредством этого метода рассуждения нужно отыскивать столько величин, выраженных двумя различными способами, сколько неизвестных терминов мы допускаем в качестве известных, для того чтобы прямо обозреть затруднение; ибо таким образом мы будем иметь столько же сравнений между двумя равными терминами.

Правило XX

Отыскав уравнения, нужно произвести опущенные нами действия, ни в коем случае не пользуясь умножением тогда, когда будет уместно деление.

Правило XXI

Если имеется много таких уравнений, их все необходимо свести к одному, а именно к тому, члены которого займут меньшее число ступеней в ряде непрерывно пропорциональных величин, соответственно каковому они и должны быть расположены по порядку.


Конец

Разыскание истины посредством естественного света*

Разыскание истины посредством естественного света, который сам по себе, не прибегая к содействию религии или философии, определяет мнения, кои должен иметь добропорядочный человек относительно всех предметов, могущих занимать его мысли, и проникает в тайны самых любопытных наук


Добропорядочный человек не обязан перелистать все книги или тщательно усвоить все то, что преподают в школах; более того, если бы он потратил чересчур много времени на изучение книг, это образовало бы некий пробел в его воспитании. В течение жизни ему необходимо совершить много иных дел, и его жизненный досуг должен быть распределен настолько верно, чтобы большая часть этого досуга отводилась на свершение добрых дел, понятие о которых бывает ему внушено его разумом, даже если он иных наставлений не получает. Однако в этот мир он приходит невежественным, и, поскольку ранние его познания основываются лишь на неразвитом чувственном восприятии и на авторитете его наставников, почти невозможно, чтобы воображение его не оказалось в плену бесчисленных ложных мыслей до того, как его разум примет на себя руководящую роль, и в дальнейшем ему нужны большая сила характера или же наставления какого-либо мудреца — как затем, чтобы избавиться от занимающих его ум ложных теорий, так и для того, чтобы заложить первоосновы прочного знания и открыть себе все пути, идя которыми он может поднять свои знания на высшую доступную ему ступень.

Перейти на страницу:

Все книги серии Философское наследие

Опыты, или Наставления нравственные и политические
Опыты, или Наставления нравственные и политические

«Опыты, или Наставления нравственные и политические», представляющие собой художественные эссе на различные темы. Стиль Опытов лаконичен и назидателен, изобилует учеными примерами и блестящими метафорами. Бэкон называл свои опыты «отрывочными размышлениями» о честолюбии, приближенных и друзьях, о любви, богатстве, о занятиях наукой, о почестях и славе, о превратностях вещей и других аспектах человеческой жизни. В них можно найти холодный расчет, к которому не примешаны эмоции или непрактичный идеализм, советы тем, кто делает карьеру.Перевод:опыты: II, III, V, VI, IX, XI–XV, XVIII–XX, XXII–XXV, XXVIII, XXIX, XXXI, XXXIII–XXXVI, XXXVIII, XXXIX, XLI, XLVII, XLVIII, L, LI, LV, LVI, LVIII) — З. Е. Александрова;опыты: I, IV, VII, VIII, Х, XVI, XVII, XXI, XXVI, XXVII, XXX, XXXII, XXXVII, XL, XLII–XLVI, XLIX, LII–LIV, LVII) — Е. С. Лагутин.Примечания: А. Л. Субботин.

Фрэнсис Бэкон

Европейская старинная литература / Древние книги

Похожие книги

Homo ludens
Homo ludens

Сборник посвящен Зиновию Паперному (1919–1996), известному литературоведу, автору популярных книг о В. Маяковском, А. Чехове, М. Светлове. Литературной Москве 1950-70-х годов он был известен скорее как автор пародий, сатирических стихов и песен, распространяемых в самиздате. Уникальное чувство юмора делало Паперного желанным гостем дружеских застолий, где его точные и язвительные остроты создавали атмосферу свободомыслия. Это же чувство юмора в конце концов привело к конфликту с властью, он был исключен из партии, и ему грозило увольнение с работы, к счастью, не состоявшееся – эта история подробно рассказана в комментариях его сына. В книгу включены воспоминания о Зиновии Паперном, его собственные мемуары и пародии, а также его послания и посвящения друзьям. Среди героев книги, друзей и знакомых З. Паперного, – И. Андроников, К. Чуковский, С. Маршак, Ю. Любимов, Л. Утесов, А. Райкин и многие другие.

Зиновий Самойлович Паперный , Йохан Хейзинга , Коллектив авторов , пїЅпїЅпїЅпїЅпїЅ пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ

Биографии и Мемуары / Культурология / Философия / Образование и наука / Документальное