Читаем Сочинения в двух томах. Том 2 полностью

Далее, они утверждают, что цилиндр касается плоскости по прямой линии, и, когда катится, он вследствие постепенного наложения все новых и новых прямых отмеривает плоскость [304]

. Однако если цилиндр касается плоскости по прямой и, когда катится, путем наложения все новых и новых прямых отмеривает плоскость, то плоскость обязательно состоит из прямых, и также поверхность цилиндра наполняется прямыми. Вследствие же этого, поскольку плоскость, а также и поверхность цилиндра обладают шириной и не являются без ширины, а то, что способно образовать ширину, должно и само обладать шириной, то ясен вывод, что и прямые линии, способные заполнить ширину, по необходимости сами обладают шириной, так что не существует никакой "длины без ширины", а тем самым и линии.

Однако если даже мы согласимся, что линия есть длина без ширины, то из этого последует еще большая апория. Действительно, как точка в своем движении создает линию [305]

, так, по их мнению, и линия в своем движении образует поверхность, которая, по их словам, есть граница тела, поскольку она обладает двумя измерениями — длиной и шириной. Поэтому если поверхность есть граница тела, то тело обязательно обладает границей. А если так, то, когда два тела присоединяются одно к другому, либо их границы касаются границ, либо ограниченное в них касается ограниченного, либо и ограниченное касается ограниченного, и также границы — границ. Так [бывает], например, с амфорой, если в качестве границы мы представим себе внешний черепок, а в виде ограниченного — содержащееся в нем вино. Именно когда две амфоры приставлены одна к другой, то или черепок будет касаться черепка, или вино вина или и черепок — черепка, и вино — вина. Но если границы касаются границ, то одно ограниченное не будет касаться другого, т.е. [не будут взаимно касаться] тела. А это абсурд. Если же одно ограниченное будет касаться другого, т.е. [будут взаимно касаться] тела, а границы их взаимно не будут касаться, то тела окажутся вне собственных границ. Если же и границы касаются границ, и одно ограниченное — другого, то мы [только] объединим эти апории: поскольку взаимно соприкасаются границы, одно ограниченное не будет касаться другого, а поскольку [будет соприкасаться] одно ограниченное с другим, тела окажутся вне собственных границ (раз границей является [здесь] поверхность, а ограниченным — тело).

Далее, границы или суть тела, или бестелесны. Но если они тела, то ложным окажется утверждение геометров, что поверхность не имеет глубины. Ведь если она есть тело, то по необходимости она должна будет обладать и глубиной, поскольку всякое тело должно обладать глубиной. Затем, [границы] не будут и касаться чего-нибудь, но все окажется беспредельным по величине. Ведь если они есть тело, то, поскольку всякое тело обладает границей, и эта последняя, будучи телом, также должна будет обладать границей, и эта последняя — точно так же, и так — до бесконечности. Если же граница бестелесна, то, поскольку бестелесное не может ни касаться чего-нибудь, ни быть предметом касания [306], границы тоже не будут касаться друг друга. А если они не касаются, то не будет и одно ограниченное касаться другого. Поэтому если даже мы и согласимся, что линия есть длина без ширины, то приводит к апории рассуждение о поверхности. Если же это приходит к апории, то даже без нашего изложения придет к апории и твердое тело, поскольку оно составляется из этого.

Будем рассматривать еще и так. Если, как утверждают геометры, тело есть то, что обладает тремя измерениями (длиной, шириной и глубиной), то тело или отделимо от этого так, что тело это — одно, а длина, ширина и глубина тела другое, или же тело есть сочетание этих [измерений]. Однако невероятно, чтобы тело отделялось от этого, поскольку, где не имеется ни длины, ни ширины, ни глубины, там нельзя помыслить и тела. Если же в качестве тела мыслится сочетание этих [моментов измерений] и кроме этого нет ничего другого, то по необходимости, если каждое из этих [измерений] бестелесно, должно стать бестелесным и общее объединение бестелесного. Именно, подобно тому как соединение точек и объединение прямых, которые по природе бестелесны, не создает твердого и сопротивляющегося тела, точно так же и стечение ширины, длины и глубины, будучи бестелесным, не сможет образовать твердого и сопротивляющегося тела. Если же тело и не существует вне этого и не есть самые эти [измерения], то тело, поскольку оно рассматривается геометрами, становится немыслимым.

Перейти на страницу:

Все книги серии Философское наследие

Опыты, или Наставления нравственные и политические
Опыты, или Наставления нравственные и политические

«Опыты, или Наставления нравственные и политические», представляющие собой художественные эссе на различные темы. Стиль Опытов лаконичен и назидателен, изобилует учеными примерами и блестящими метафорами. Бэкон называл свои опыты «отрывочными размышлениями» о честолюбии, приближенных и друзьях, о любви, богатстве, о занятиях наукой, о почестях и славе, о превратностях вещей и других аспектах человеческой жизни. В них можно найти холодный расчет, к которому не примешаны эмоции или непрактичный идеализм, советы тем, кто делает карьеру.Перевод:опыты: II, III, V, VI, IX, XI–XV, XVIII–XX, XXII–XXV, XXVIII, XXIX, XXXI, XXXIII–XXXVI, XXXVIII, XXXIX, XLI, XLVII, XLVIII, L, LI, LV, LVI, LVIII) — З. Е. Александрова;опыты: I, IV, VII, VIII, Х, XVI, XVII, XXI, XXVI, XXVII, XXX, XXXII, XXXVII, XL, XLII–XLVI, XLIX, LII–LIV, LVII) — Е. С. Лагутин.Примечания: А. Л. Субботин.

Фрэнсис Бэкон

Европейская старинная литература / Древние книги

Похожие книги