Читаем Солнечные элементы полностью

1. 4 — измерения на монохроматоре в условиях низких засветок с градуировкой по калиброванному термоэлементу; 2, 6 — измерения 1, 4 на модулированном потоке с подсветкой имитированным солнечным излучением; 3, 5 — измерения 1, 4 с пересчетом с помощью масштабного множителя, определенного по эталонной светоизмерительной лампе в условиях высоких засветок




Рис. 4.2. Солнечные элементы из кремния с текстурированной поверхностью (а), с рельефной поверхностью и p-n-переходом, расположенным как на горизонтальных, так и на вертикальных участках рельефа (б)


Стремление приблизить р-n

-переход к поверхности вполне понятно, если учесть, сколь большая часть солнечного света поглощается на малой глубине (см. рис. 2.7 и 2.15) и насколько велики потери носителей заряда из-за их рекомбинации в переднем легированном слое элементов. Логическим пределом движения в этом направлении являются поверхностно-барьерные солнечные элементы разных типов, вовсе не содержащие легированного слоя, так что поле объемного заряда подходит вплотную к поверхности.

Разработка солнечных элементов с p-n-переходом, расположенным на глубине менее 0,2 мкм, в значительной мере решила проблему пространственного разделения носителей заряда, генерированных коротковолновым излучением. Действительно, коэффициент собирания у подобных солнечных элементов даже при λ=0,4 мкм достигает ~0,9, тогда как при глубине залегания ≥0,4 мкм коэффициент собирания в этой области спектра равен 0,5–0,6.

В силу высокой чувствительности в фиолетово-голубой части спектра описываемые солнечные элементы получили название фиолетовых. Плотность тока короткого замыкания таких солнечных элементов удалось довести до 40–42 мА/см2. Спектральная зависимость токовых потерь фиолетовых солнечных элементов, рассчитанная с учетом спектрального распределения внеатмосферного солнечного излучения, показывает, что их коэффициент собирания близок к 1,0 почти во всей области чувствительности. Потери в коротковолновой области спектра относительно невелики, и дальнейшее улучшение использования солнечного излучения возможно не за счет совершенствования внутренней структуры солнечных элементов (ибо p-n-переход разделяет практически каждую рожденную светом пару электрон-дырка), а путем улучшения оптических параметров солнечных элементов — снижения отражения и затенения поверхности контактами.

Уменьшение толщины верхнего легированного слоя важно не только для повышения фоточувствительности, но и для улучшения диодных характеристик солнечных элементов. Согласно расчетным и экспериментальным данным, параметры легированного слоя определяющим образом влияют на величину тока насыщения и, следовательно, фото-ЭДС. Подобная роль обусловлена, во-первых, эффектами, связанными с высоким уровнем легирования — сужением запрещенной зоны и уменьшением эффективной концентрации основных носителей, появлением обратного градиента поля, и, во-вторых, чрезвычайно низким временем жизни носителей заряда, вероятно не превышающим 1 нс. Для снижения тока насыщения рекомендуется уменьшить толщину верхнего слоя и обеспечить оптимальный уровень легирования 2-1019 см-3 (ранее при создании элементов разработчики стремились к получению в верхнем легированном слое концентрации примеси и свободных носителей заряда на уровне 1021 см-3

, близком к пределу растворимости фосфора в кремнии). Влияние возросшего слоевого сопротивления должно быть скомпенсировано соответствующей структурой контактной сетки.

При разработке фиолетовых солнечных элементов эти требования были реализованы за счет ряда технологических и конструктивных новшеств. Основные из них: низкотемпературная (770–800oC) диффузия в потоке газа носителя, относительно малая поверхностная концентрация легирующей примеси (1019 см-3) и густая контактная сетка (8—10 полос/см) при ширине полоски ~50 мкм.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки