Читаем Солнечные элементы полностью

Расчет и эксперимент, выполненные в одной из отечественных работ, показали, что пористая оксидная пленка, предварительно образованная на поверхности кремния методом анодного окисления, дает возможность даже при однократной термодиффузии получить двуслойную структуру легированной области. Часть диффузанта, например фосфора, проходя через поры, образует область низких концентраций примеси в зоне, близкой к p-n-переходу, другая часть, основная, диффундируя сквозь вещество пленки, создает область большой концентрации фосфора у поверхности элемента. Регулируя время и температуру диффузии, а также изменяя пористость пленки, можно достаточно плавно и точно управлять профилем распределения примесей в легированной области.

Оптимальный режим однократной диффузии через предварительно созданную оксидную пленку определенной пористости дает возможность получать p-n-переходы с разной глубиной залегания легированного слоя (0,3–1,3 мкм). При этом распределение примесей соответствует четко обозначенным двум областям высокой и низкой концентрации.

Другой технологический прием создания сложного распределения примесей — двойное легирование. Диффузионный слой, образованный в процессе первой термической диффузии, стравливается до глубины 0,5–0,6 мкм, затем осуществляется вторичное легирование по режиму однократной термодиффузии. Полученные p-n-переходы находятся на глубине 1,0–1,2 мкм от поверхности, при этом на глубине 0,3–0,7 мкм наблюдается резкий перепад концентрации примесей на два порядка. Профиль концентраций примесей строится на основе результатов измерений проводимости четырехзондовым методом при послойном анодном стравливании, глубина

p-n-перехода определяется с помощью сферического шлифа.

Была обнаружена повышенная чувствительность экспериментальных солнечных элементов в коротковолновой области спектра, что объясняется преобладающим (над эффектом ухудшения параметров диффузии неосновных носителей в области повышенной концентрации) влиянием введенного тянущего поля сложной конфигурации.

Вольт-амперные характеристики солнечных элементов с двуслойной структурой легированной области также значительно лучше, чем у обычных. Плотность нагрузочного тока с единицы полезной площади таких солнечных элементов при глубине залегания p-n-перехода 1,0–1,2 мкм на 9–17 % выше, чем у элементов с экспоненциальным распределением примесей в легированном слое такой же глубины.

Таким образом, обоснованное теоретически и воспроизведенное экспериментально двухступенчатое распределение примесей приводит к значительному улучшению вольт-амперных и спектральных характеристик солнечных элементов даже при сравнительно большой глубине залегания p-n

-перехода (lл—1,2 мкм), что позволяет не только увеличить КПД элементов, но и использовать для токосъема с легированного слоя простые, дешевые и надежные электрические контакты, получаемые, например, химическим осаждением никеля. Проблема создания надежных омических контактов, удешевления и автоматизации их нанесения — одна из наиболее сложных в современной технологии изготовления солнечных элементов.

Резко увеличить коротковолновую спектральную чувствительность кремниевых солнечных элементов можно также, используя пассивирующую пленку, например, диоксида или нитрида кремния. Пленка содержит встроенный электрический заряд и вместе с тонким легированным слоем кремния, как и у солнечных элементов с тянущим полем в легированной области, будет образовывать двуслойную структуру п — п+ или р+ — р, позволяющую приблизить тянущее электростатическое поле к поверхности, уменьшить эффективную скорость поверхностной рекомбинации и улучшить собирание избыточных носителей заряда, созданных коротковолновым излучением, поглощенным вблизи поверхности солнечного элемента.

В одной из работ, например, подобная структура п+— n-типа была осуществлена на низкоомных кремниевых монокристаллических подложках с удельным сопротивлением 0,1–0,3 Ом×см путем бомбардировки ионами фосфора с энергией 10 кэВ и плотностью пучка ионов от 2,5×1012 до 2,5×1015 см-2

. После бомбардировки проводился термический отжиг пластин в течение 30 мин при 850o G в атмосфере водяного пара и кислорода для электрической активации внедренной примеси фосфора. Одновременно на поверхности вырастала пленка диоксида кремния толщиной 2000 А и производилось ее легирование фосфором и бором из подложки. Для уплотнения пленки диоксида кремния осуществлялся еще один термический отжиг в сухом кислороде в течение 1 ч при 700o C (показатель преломления пленки при этом повышался до 1,48). Чтобы восстановить время жизни неосновных носителей в базовых слоях (подложках) после двух высокотемпературных отжигов образцы выдерживались при 550o G в течение 2 ч. Медленным травлением толщина плёнки диоксида кремния доводилась до значения 1000 А, оптимального для просветления поверхности. Методом фотолитографии в пленке вытравливались окна для контактных полос из обычной трехслойной композиции: титан — палладий — серебро.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки