Читаем Солнечные элементы полностью

Солнечные элементы с тыльным сетчатым контактом, прозрачные в инфракрасной области спектра, начиная от длины волны 1,1 мкм, были получены в СССР из кремния и арсенида галлия и на основе тонкопленочных структур Cu2S — CdS во Франции. Как показали расчеты для геостационарной орбиты, у таких солнечных элементов в космосе температура должна понизиться на 10–15°, а выходная мощность возрасти на 5–7 %.

Прозрачные солнечные элементы из кремния и арсенида галлия были успешно использованы также для создания первых реальных моделей каскадных солнечных элементов.

Нефотоактивное длинноволновое инфракрасное излучение может быть не только пропущено сквозь прозрачный солнечный элемент, но и отражено от его тыльной поверхности к источнику излучения. Для этого на тыльную поверхность прозрачных солнечных элементов, свободную от токосъемного омического контакта, должен быть нанесен слой высокоотражающего металла, например алюминия, меди, серебра.

Отражающий слой может быть получен испарением в глубоком вакууме обычной трехслойной структуры титан — палладий — серебро непосредственно на поверхность кремния, свободную от контактных полос, или создан одновременно с алюминиевым контактом. Однако необходимое для получения хорошего омического контакта впекание алюминия при высоких температурах приводит к уменьшению коэффициента отражения таким слоем инфракрасного излучения.

Значительно выгоднее использовать для увеличения отражения в нефотоактивной части спектра слой высокоотражающего металла, нанесенный на поверхность кремния между полосами сетчатого контакта на тыльной стороне. В этом случае можно ограничиться сравнительно небольшим (до температуры 150–200 °C) подогревом поверхности кремния для увеличения адгезии слоев и сохранить отражение в инфракрасной области от границы кремний — металл на достаточно высоком уровне.

К столь же высоким значениям коэффициента отражения приводит решение аналогичной задачи другим простым и технологичным способом: приклейкой кремнийорганическим каучуком к тыльной стороне прозрачных солнечных элементов стеклопленок с нанесенным слоем алюминия или серебра. При этом к внешней поверхности элементов или группы — модуля из таких элементов — может быть приклеено стекло с нанесенной на его поверхность (обращенную к элементу) сеткой из отражающего металла в местах, расположенных над токосъемными контактами самих солнечных элементов или над электрическими соединениями между ними. Изменяя ширину полос отражающей сетки, можно регулировать температуру таких элементов при увеличении или уменьшении потока солнечного излучения. Солнечные батареи такой конфигурации обладают в космосе более низкой равновесной рабочей температурой (на 25–35 °C) и повышенной термостойкостью, что было экспериментально подтверждено в ходе длительной эксплуатации в космических условиях на борту советских межпланетных станций «Венера-9» и «Венера-10».



Рис. 4.3. Конструкция прозрачного двустороннего солнечного элемента с n+ — р — p+

- или p+ — p — n+-структурой (а) и его вольт-амперные характеристики (б)

1–3 — слои п+-, p-, р+-типа в случае n+

— р — р+-структуры и слои p+ — ,p-, п+-типа в случае р+ — р — n+
-структуры соответственно; 4 — токосъемные контакты, 5 — просветляющие и защитные покрытия. А — солнечное излучение; Б — его инфракрасная составляющая, проходящая сквозь элемент; I — освещение только тыльной стороны (Е = 1360 Вт/м2); II — освещение только верхней стороны (Е = 1360 Вт/м2); III — одновременное освещение верхней (Е = 1360 Вт/м2) и тыльной стороны элемента (Е = 420 Вт/м2)


Следует отметить, что оптические характеристики прозрачных солнечных элементов из различных полупроводниковых материалов с отражающими покрытиями на тыльной стороне весьма близки к оптическим характеристикам дихроических светоделительных зеркал, что делает весьма перспективным применение таких солнечных элементов для создания высокоэффективных фотоэлектрических систем со спектральным разделением солнечного излучения и последующим преобразованием его в электроэнергию элементами с различной спектральной чувствительностью. Прозрачные солнечные элементы могут при этом выполнять одновременно две функции: активно преобразующего элемента системы и светоделительного зеркала.

Перейти на страницу:

Похожие книги

Солнце, Луна, Марс
Солнце, Луна, Марс

Известный телеведущий Игорь Прокопенко рассказывает в этой книге о главных тайнах Солнца, Луны и Марса – самых важных для нашей планеты космических объектов. Эти три небесных тела словно меняются ролями, они то напоминают, что могли быть источниками жизни, и обещают новый дом в далеком будущем, то угрожают уничтожить Землю буквально в этот момент и всего за несколько секунд.Какая связь между природными катаклизмами и вспышками солнечной активности? Есть ли возможность утихомирить разбушевавшееся светило? Как связаны знаменитые пирамиды Гизы и такие же постройки на Марсе? Откуда на самом деле на Землю была принесена жизнь? Есть ли в наших генах марсианский след? Что хранится в архивах космических спецслужб? Что остановило американцев в их успешном поначалу освоении Луны? Почему Марс так упорно противится исследованиям? Стоит ли землянам ждать возмездия за свое любопытство?Сможет ли выжить сообщество планет? Ведь Земля – настоящая дочь Солнца и сестра Марса, вместе со своим спутником – Луной.В этой книге вас ждут различные версии ученых, которые пытаются раскрыть тайны возникновения и развития цивилизаций.

Игорь Станиславович Прокопенко

Альтернативные науки и научные теории / Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки