Читаем Стратегии решения математических задач полностью

3 = 20 + 2

5 = 21 + 3

7 = 22 + 3

9 = 22 + 5

11 = 23 + 3

13 = 23 + 5

15 = 23 + 7

17 = 22 + 13

19 = 24 + 3

и так далее

51 = 25 + 19

и так далее

125 = 26 + 61

127 =?

129 = 25

+ 97

131 = 27 + 3.

Перейдем теперь к задачам, которые наиболее эффективно решаются путем распознавания закономерности, особенно когда такая закономерность не очевидна.

Задача 2.1

Какая цифра находится в разряде единиц у числа, где — это показатели степени?

Обычный подход

К сожалению, находятся люди, которые полагают, что для определения значения этого числа нужно последовательно возвести основание в степень вплоть до последнего показателя. Такой подход не может быть успешным!

Образцовое решение

Попробуем выяснить, существует ли какая-то закономерность в числах по мере повышения показателя степени в соответствии с условиями задачи. По мере повышения показателя основания 2 цифры в разряде единиц изменяются в последовательности 2, 4, 8, 6.

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27

= 128

28 = 256.

Результат на третьей ступени наших вычислений ниже кратен 4, а любой результат возведения 2 в степень, кратный 4, дает число, у которого в разряде единиц стоит 6.



Таким образом, у нашего числа в разряде единиц находится цифра 6.

Задача 2.2

В каждой приведенной ниже прямоугольной решетке содержится определенное количество точек. Сколько точек будет на рис. 49?


Обычный подход

Очевидный подход — это последовательное построение решеток вплоть до рис. 49, в котором можно подсчитать точки. Это займет много времени и потребует огромного терпения, не говоря уже о количестве бумаги. Вместе с тем наверняка должен существовать более практичный подход к решению этой задачи.

Образцовое решение

Попробуем организовать данные и поискать закономерность. Перенесем в таблицу то, что нам уже известно.



Ну вот и закономерность. Высота на 2 больше номера рисунка, а ширина на 1 больше номера рисунка. Для рис. n

мы получаем:



Таким образом, на рис. 49 будет 51 × 50 = 2550 точек.

Задача 2.3

Круг можно разделить на семь частей с помощью трех прямых линий. Какое максимальное количество частей можно получить при делении круга с помощью семи прямых линий?

Обычный подход

Обычно при решении этой задачи берут круг и проводят через него семь линий так, чтобы любые три из них не пересекались, т. е. не имели общей точки. Если проделать такую операцию аккуратно, то она должна привести к правильному ответу. Вместе с тем определение максимально возможного количества частей может быть сложным.

Образцовое решение

При решении этой задачи интересно посмотреть, не проявится ли какая закономерность при увеличении количества линий, делящих круг на части, при условии, что никакие три из них не должны иметь общей точки. Понятно, что одна линия делит круг всего на две части. Две линии позволяют разделить круг на четыре части. В таблице ниже показано количество частей, на которые можно разделить круг с помощью заданного количества линий, ни одна тройка которых не имеет общей точки.



Закономерность, похоже, наблюдается в разнице, которая увеличивается каждый раз на единицу. Таким образом, протестировав следующий вариант, в котором пять линий предположительно дают 16 частей, мы можем, по всей видимости, составить на основе выявленной закономерности следующую таблицу.



Итак, с помощью семи линий можно разделить круг на 29 частей.

Задача 2.4

Нам дают карту с направлениями движения вдоль улиц, как показано на рис. 2.1.



Сколько существует маршрутов из точки A в точку L?

Обычный подход

Самый очевидный подход — просто подсчитать возможные маршруты. Иными словами, определять маршруты по одному за раз и суммировать результаты. Например, один маршрут — это A-B-C — D-E-F-G-H-I-J-K-L, другой — A-C-D-E-G-K-L и т. д. Вместе с тем, как вы видите, такой путь довольно громоздок, и к тому же при его использовании трудно избежать дублирования маршрутов. А вариантов здесь порядочно!

Образцовое решение

Воспользуемся стратегией поиска закономерности. Допустим, мы хотим попасть из точки A в точку B. Здесь имеется только один маршрут (A-B). В точку C можно добраться из точки A уже двумя путями (A-B-C и A-C). Из точки A в точку D существуют три маршрута, а именно (A-B-D, A-C-D, A-B-C-D). Если продолжить подсчет таким образом, то мы получим следующее количество маршрутов в каждую точку вплоть до точки F.



Они показаны на рис. 2.2.



Числовой ряд 1, 2, 3, 5, 8, 13 — это последовательность Фибоначчи, которую в западном мире впервые представил Леонардо Пизанский (известный так же, как Фибоначчи) в 1202 г. В начале такой последовательности стоят 1 и 1, а последующие числа получаются как сумма предыдущих двух. Если продолжить эту последовательность до точки L, то мы получим следующее:

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука