Каждую главу в этой книге мы начинаем с описания конкретной стратегии, показывающего, как ее можно использовать в каждодневных ситуациях, а затем приводим примеры применения в математике. После этого мы представляем ряд задач, которые лучше всего решаются с помощью именно этой стратегии. Каждая задача — это попытка проиллюстрировать применение конкретной стратегии. В число стратегий, которые мы собираемся рассмотреть, входят:
1. Логическое рассуждение.
2. Распознавание закономерности.
3. Действие от обратного.
4. Принятие другой точки зрения.
5. Анализ экстремальных ситуаций.
6. Решение более простой аналогичной задачи.
7. Организация данных.
8. Схематичное изображение, или визуальное представление.
9. Учет всех возможностей.
10. Обоснованное предположение и проверка.
Как мы уже говорили, редко когда задачу можно решить единственным способом. Решение, которое мы демонстрируем, представляет собой всего лишь один иллюстративный пример. Мы предлагаем читателю попытаться найти другие решения, возможно, более интересные и необычные. Если это вам удастся, мы скажем, что вы молодец! Кроме того, в некоторых случаях, когда доступно несколько стратегий, можно с разным успехом использовать их сочетания.
Чтобы показать, как можно подойти к задаче (и решить ее) с использованием различных стратегий, мы обычно даем несколько решений.
Задача
В комнате, где находятся 10 человек, все поздоровались друг с другом, однократно пожав руку. Сколько всего было рукопожатий?
Решение 1
Воспользуемся стратегией визуального представления
и построим схему. В ней 10 точек (которые расположены так, что никакие три из них не находятся на одной прямой), представляющих 10 людей. Начнем с человека, представленного точкойМы соединяем точку
Далее, из точки
Решение 2
Для решения задачи можно использовать стратегию учета всех возможностей
. Возьмем показанную ниже сетку, в которую включены 10 человек,Оставшиеся клетки показывают двойное число всех других рукопожатий (т. е.
В общем случае для сетки размером
Решение 3
Попробуем теперь решить задачу с помощью принятия другой точки зрения
. Возьмем комнату, где находятся 10 человек, каждый из которых пожимает руку остальным девяти. Можно предположить, что число рукопожатий будет равным 10 × 9, или 90. Однако нам нужно разделить это число на два, чтобы устранить дублирование (поскольку рукопожатиеРешение 4
Теперь подойдем к решению задачи через распознавание закономерности
. В таблице, представленной ниже, мы перечисляем количество рукопожатий в комнате по мере увеличения числа присутствующих.В третьей колонке, где приведено суммарное количество рукопожатий, представлена последовательность чисел, называемых
Решение 5