Читаем Стратегии решения математических задач полностью

Чаще всего говорят, что после испарения 1 % воды вес ягод должен уменьшиться до 99 %, а значит ягоды весят 99 кг. Это неправильно!

Образцовое решение

Попробуем найти ответ путем логического рассуждения. Исходно в ягодах содержится 99 % воды, т. е. в них 99 кг воды и 1 кг сухого вещества, иначе говоря, масса сухих ягод составляет 1 %. Масса сухого вещества не меняется: в конце процесса сушки она так и останется равной 1 кг. Вместе с тем доля того, что не является водой, удваивается до 2 %.

Для того, чтобы нечто, имеющее фиксированное количество (1 кг сухого вещества в нашем случае), удвоило свою долю (с 1 % до 2 %), суммарное количество смеси должно уменьшиться в два раза. В начале у нас был 1 % сухого вещества, или а в конце — 2 %, или что сокращается до т. е. мы получаем 1 кг сухого вещества в 50 кг суммарной массы. Таким образом, в конце в ягодах остается 49 кг воды.

Задача 1.3

Во время школьного эксперимента Мигель многократно бросает обычный шестигранный игральный кубик. Он следит за каждой выпавшей цифрой и хочет остановиться, как только одна цифра выпадет три раза. Мигель останавливается после 12-го броска, и сумма выпавших цифр составляет 47. Какая цифра выпала третий раз? (Обычный шестигранный игральный кубик имеет цифры от 1 до 6.)

Обычный подход

Одно из решений — это взять игральный кубик и поэкспериментировать с ним. Получить точно 47 очков за 12 бросков довольно трудно, но даже если это и получится, то такое решение нельзя назвать изящным!

Образцовое решение

Давайте порассуждаем. За 11 бросков ни одна цифра не выпала три раза, иначе эксперимент закончился бы. Это означает, что пять цифр выпали дважды, а одна — лишь однократно. Обозначим эту цифру символом M. Если M выпадет в 12-м броске, то сумма будет равна 2 (1 + 2 + 3 + 4 + 5 + 6) = 42. Таким образом, сумма после 11 бросков составляет 42 —

M. Если N — число, выпавшее в третий раз, то 42 — M + N = 47, а N — M = 5. Мы знаем, что N и M могут иметь значения только от 1 до 6. Единственные два числа из данного ряда, которые имеют разность 5, это 6 и 1. С учетом такого ограничения уравнение N — M = 5 имеет единственное решение, где M = 1, а N = 6. Таким образом, в третий раз выпала цифра 6.

Задача 1.4

Имеется треугольник, периметр которого численно равен его площади. Чему равен радиус вписанной в треугольник окружности?

Обычный подход

Обычно при решении этой задачи строят чертеж, как показано на рис. 1.1, и подбирают значения в попытке найти ответ. При таком подходе нужно быть готовым к разочарованиям.


Образцовое решение

Для решения этой задачи необходимо немного логики и следование поставленным условиям. Начнем с треугольника ABC, периметр которого равен p = AB + BC + CA. Обозначим символом O центр вписанной окружности с радиусом r. Площадь треугольника

ABC равна сумме площадей треугольников AOB, BOC и COA с основаниями AB, BC и CA, соответственно, и высотой r. Это дает нам следующее уравнение:



Поскольку периметр треугольника численно равен его площади, мы получаем:

Задача 1.5

В США президентов выбирают каждые четыре года в годы, кратные 4. Некоторые из этих лет являются также квадратами целых чисел. Сколько президентских выборов между 1788 и 2016 годами пришлось на годы, которые являются квадратами простых чисел? В каких годах они проводились?

Обычный подход

Один из путей решения этой задачи — перебор всех четырехлетних периодов между 1788 и 2016 г. Поскольку 1788 делится на 4, то это будет первый год президентских выборов в рассматриваемом диапазоне. Таким образом, можно составить перечень этих лет (1788, 1792, 1796, …, 2012, 2016), а затем извлечь квадратный корень из каждого для определения тех лет, которые являются квадратами целых чисел. Калькулятор, конечно, облегчит задачу, но процесс решения все равно будет долгим и нудным!

Образцовое решение

Это отличный пример применения стратегии логического рассуждения. Прежде всего, кратным 4 может быть только четный год, поэтому можно отбросить все нечетные годы. Помимо этого, квадратные корни из этих лет должны лежать в интервале от 40 до 50, поскольку:

402 = 1600 (до заданного диапазона);

422 = 1764 (до заданного диапазона);

442 = 1936;

462 = 2116 (после заданного диапазона).

В пределах заданного диапазона находится только 1936 г. Таким образом, 1936 — это единственный год президентских выборов, который является квадратом целого числа.

Задача 1.6

Джимми подбрасывает одновременно две монетки. Он делает это до тех пор, пока хотя бы на одной монетке не выпадет орел (О). На этом игра заканчивается. Какова вероятность того, что в последнем подбрасывании орел выпадет на обеих монетках?

Обычный подход

Перейти на страницу:

Похожие книги

Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение
Гиперпространство. Научная одиссея через параллельные миры, дыры во времени и десятое измерение

Инстинкт говорит нам, что наш мир трёхмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Митио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признаётся многими авторитетными учёными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести учёных к так называемой теории всего. Однако серьёзной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Митио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Происхождение эволюции. Идея естественного отбора до и после Дарвина
Происхождение эволюции. Идея естественного отбора до и после Дарвина

Теория эволюции путем естественного отбора вовсе не возникла из ничего и сразу в окончательном виде в голове у Чарльза Дарвина. Идея эволюции в разных своих версиях высказывалась начиная с Античности, и даже процесс естественного отбора, ключевой вклад Дарвина в объяснение происхождения видов, был смутно угадан несколькими предшественниками и современниками великого британца. Один же из этих современников, Альфред Рассел Уоллес, увидел его ничуть не менее ясно, чем сам Дарвин. С тех пор работа над пониманием механизмов эволюции тоже не останавливалась ни на минуту — об этом позаботились многие поколения генетиков и молекулярных биологов.Но яблоки не перестали падать с деревьев, когда Эйнштейн усовершенствовал теорию Ньютона, а живые существа не перестанут эволюционировать, когда кто-то усовершенствует теорию Дарвина (что — внимание, спойлер! — уже произошло). Таким образом, эта книга на самом деле посвящена не происхождению эволюции, но истории наших представлений об эволюции, однако подобное название книги не было бы настолько броским.Ничто из этого ни в коей мере не умаляет заслуги самого Дарвина в объяснении того, как эволюция воздействует на отдельные особи и целые виды. Впервые ознакомившись с этой теорией, сам «бульдог Дарвина» Томас Генри Гексли воскликнул: «Насколько же глупо было не додуматься до этого!» Но задним умом крепок каждый, а стать первым, кто четко сформулирует лежащую, казалось бы, на поверхности мысль, — очень непростая задача. Другое достижение Дарвина состоит в том, что он, в отличие от того же Уоллеса, сумел представить теорию эволюции в виде, доступном для понимания простым смертным. Он, несомненно, заслуживает своей славы первооткрывателя эволюции путем естественного отбора, но мы надеемся, что, прочитав эту книгу, вы согласитесь, что его вклад лишь звено длинной цепи, уходящей одним концом в седую древность и продолжающей коваться и в наше время.Само научное понимание эволюции продолжает эволюционировать по мере того, как мы вступаем в третье десятилетие XXI в. Дарвин и Уоллес были правы относительно роли естественного отбора, но гибкость, связанная с эпигенетическим регулированием экспрессии генов, дает сложным организмам своего рода пространство для маневра на случай катастрофы.

Джон Гриббин , Мэри Гриббин

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Рассуждение о методе. С комментариями и иллюстрациями
Рассуждение о методе. С комментариями и иллюстрациями

Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания. В трактате «Первоначала философии» Декарт пытается постичь знание как таковое, подвергая все сомнению, и сформулировать законы физики.Тексты снабжены подробными комментариями и разъяснениями.В формате PDF A4 сохранен издательский макет книги.

Рене Декарт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли
Мозг: биография. Извилистый путь к пониманию того, как работает наш разум, где хранится память и формируются мысли

Стремление человечества понять мозг привело к важнейшим открытиям в науке и медицине. В своей захватывающей книге популяризатор науки Мэтью Кобб рассказывает, насколько тернистым был этот путь, ведь дорога к высокотехнологичному настоящему была усеяна чудаками, которые проводили ненужные или жестокие эксперименты.Книга разделена на три части, «Прошлое», «Настоящее» и «Будущее», в которых автор рассказывает о страшных экспериментах ученых-новаторов над людьми ради стремления понять строение и функции самого таинственного органа. В первой части описан период с древних времен, когда сердце (а не мозг) считалось источником мыслей и эмоций. Во второй автор рассказывает, что сегодня практически все научные исследования и разработки контролируют частные компании, и объясняет нам, чем это опасно. В заключительной части Мэтью Кобб строит предположения, в каком направлении будут двигаться исследователи в ближайшем будущем. Ведь, несмотря на невероятные научные прорывы, мы до сих пор имеем лишь смутное представление о работе мозга.

Мэтью Кобб

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука