Соотношения песка и алеврита в осадках (см. рис. 3) практически такие же, как в кол. PS70/319 (R=-0.9694), а между пелитовой и алевритовой фракцией в целом (см. рис. 3) существует тесная положительная корреляция (R=0.7599). Однако специальное исследование связи между алевритом и пелитом для осадков с высоким (более 50 %) содержанием алеврита показало практическое отсутствие корреляции между этими фракциями (R=0.2486). К сожалению, гранулометрические данные для осадков с содержанием алеврита менее 50 % крайне немногочисленны и корректного корреляционного анализа провести нельзя, однако на качественном уровне возникает впечатление, что для этих осадков возможна даже отрицательная корреляция между исследуемыми фракциями. Таким образом, вероятно, можно предположить, что в районе кол. PS70/358 айсберговый материал был представлен не только песком, но и (частично) алевритом, а явления вымыва пелитового вещества и усиления сортировки осадков за счет эпизодов усиления гидродинамической активности имели место и над гребнем хребта, хотя и в меньшей степени, чем над его склоном.
Рис. 4 дает представление об отличиях компонентного состава осадков исследуемой колонки по разрезу. Основными компонентами являются светлоокрашенные прозрачные минералы (кварц и полевые шпаты), глинистые минералы, обломки горных пород, цветные прозрачные минералы, черные рудные, гидроокислы железа, биогенные карбонаты (остатки планктонных и секреционных бентосных фораминифер, кокколиты). Выявлены особенности распределения этих компонентов по литостратиграфическим горизонтам: отложения нечетных горизонтов и полярной толщи относительно обогащены биогенными карбонатами, гидроокислами железа, светлоокрашенными минералами (полевыми шпатами); отложения четных горизонтов обогащены кварцем и обломками горных пород. Местами в четных горизонтах также отмечены повышенные содержания биогенных карбонатов.
Рис. 4. Компонентный состав осадков кол. PS70/358. Римскими цифрами даны номера литостратиграфических горизонтов (ЛСГ). Q – кварц; Fsp – полевые шпаты; Цв – цветные минералы; Чр – черные рудные минералы; Гп – обломки горных пород; Гл – глинистые минералы; ГОЖ – гидроокислы железа; БК – биогенные карбонаты (сумма планктонных фораминифер, секреционных бентосных фораминифер и кокколитов).
Сравнение литологического состава обеих описанных колонок продемонстрировало как черты сходства (две толщи, сходная последовательность горизонтов), так и различия (большая крупнозернистость осадков кол. PS70/319, различная мощность одноименных горизонтов, относительная крупнозернистость осадков ЛХСГ III в кол. PS70/358 по сравнению с кол. PS70/319, и т. д.).
Изучение химического состава осадков позволило выделить хемостратиграфические горизонты, полностью совпавшие с ранее выделенными литостратиграфическими горизонтами, что позволяет говорить о существовании лито-хемостратиграфических горизонтов (ЛХСГ) в обеих колонках. Полученные результаты по среднему химическому составу отложений различных ЛХСГ и толщ в обеих колонках показаны в табл. 3. Здесь приведены данные только по макрокомпонентам.
Если отвлечься от деталей и учитывать число проб для каждой строки табл. 3, то выясняются несколько простых закономерностей: 1) химический состав ЛХСГ и толщ прежде всего определяется их литологией: чем грубее осадки, тем больше в них SiO2
и меньше остальных компонентов; 2) в целом химический состав осадков нечетных горизонтов и полярной толщи близок к составу глинистых пород мезозойских складчатых поясов, а осадков четных ЛХСГ – к тому же составу, обогащенному примесью песчаных пород из складчатых поясов того же возраста.Первую из отмеченных закономерностей хорошо подтверждает график корреляции отношения (песок/сумма алеврита и пелита), умноженного на 100, и отношения SiO2
/Al2O3, умноженного на 10. Коэффициент корреляции равен 0.8672.Обращает на себя внимание существование в полярной толще нескольких слоев (например, на уровнях 290, 555 и 670 см – см. табл. 2) с очень высокими потерями при прокаливании, заметно превышающими 10 %, очень низкими отношениями SiO2
/Al2O3 (примерно вдвое более низкими, чем в осадках с песчаной примесью), высокими содержаниями F22O3, Cu, Zn, V, пониженными концентрациями MnO. Все это заставляет говорить об эпизодах сохранения в тонкозернистых осадках высоких содержаний органического вещества, обусловленного затрудненной вентиляцией придонных вод вследствие усиленной стагнации.