Читаем Строение и история развития литосферы полностью

Профили 5–5 и 6–6, расположенные в районе архипелага ЗФИ, до выполнения исследований в 25-м рейсе НИС «Ак. Ник. Страхов» были слабо обеспечены геотермическими измерениями. Имелось лишь три определения теплового потока в скважинах «Северная», «Нагурская» и «Хейса», по которым сделана оценка глубинного теплового потока Л.А. Цыбулей и В.Г. Левашкевичем (1992), составившим 76–80 мВт/м2. Можно согласиться с этой оценкой, т. к. полученные в 2007 году новые измерения на полигоне вблизи ЗФИ показали весьма контрастные значения: наряду с высокими величинами теплового потока (88 и 97 мВт/м2), измерены и низкие значения (30–35 мВт/м2), так что в среднем мы получим указанные выше оценки. Здесь мы не будем обсуждать причины столь контрастных значений теплового потока. Это сделано в другой статье авторов в этой же книге.

Строение Южно-Карской впадины изучено сейсмическими работами МОВ и МПВ, а также гравимагнитными методами. Результаты этих работ показывают, что впадина представляет собой рифтогенный бассейн мезозойского возраста с заметно утоненной континентальной корой (до 26–30 км) и резко дифференцированной структурой поверхности фундамента. Крупнейшие разломы имеют явно выраженный листрический облик, а амплитуда смещений по ним достигает 3–6 км (Боголепов и др., 2000). Основные тектонические элементы рифтовой системы сформированы в результате последовательного отрыва крупных клиновидных блоков и пластин консолидированной коры по зонам разломов, выполаживающимся и затухающим в нижнекоровом слое. Растяжение земной коры в Южно-Карской впадине составляет около 20 %, что близко к значениям растяжения в рифтогенных Восточно-Баренцевском прогибе и Североморской впадине. Геодинамический режим растяжения всегда сопровождается повышением температур и теплового потока. Именно такой характер геотермического поля наблюдается нами в Южно-Карской впадине.

Южно-Карский седиментационный бассейн, являющийся подводным замыканием Западно-Сибирского мегабассейна, по углеводородному потенциалу является крупнейшим на арктическом шельфе России. Все ресурсы углеводородов приурочены к мезозойским отложениям и представлены в подавляющей своей части газом.

Для описания структуры коры в Карском море были использованы 24 профиля, полученные как в результате глубинного сейсмического профилирования по длинным геотраверсам (10 профилей), так и в результате обработки информации по коротким профилям МОВ (14 профилей) (Поселов и др., 1996) (рис. 10). Вдоль каждого из них был выполнен расчет глубинных температур с помощью программного пакета «TERMGRAF»(рис. 11) (Подгорных и др., 2001). В качестве граничного условия на нижней границе задавался тепловой поток, измеренный в нескольких разведочных скважинах на акватории: (73–76 мВт/м2

– в западной части и 53 мВт/м2 – в восточной части, западнее арх. Арктического Института), у западного побережья п-ва Ямал (54–58 мВт/м2) и на о. Белый (54–59 мВт/м2). При расчете использовались значения теплофизических свойств слоев коры, адекватные установленным граничным скоростям (см. табл.1).


Рис. 10. Схема расположения профилей ГСП и их номера, а также точки измерений теплового потока в Карском регионе (мВт/м2).


Рис. 11. Сейсмический и геотермический разрезы вдоль профиля 434-1 в Карском море. 1 – сейсмические границы и значения граничных скоростей, км/с; 2 – изотермы, °С.


Современные знания о геологии шельфа Моря Лаптевых основаны на многоканальных сейсмических исследованиях, которые проводились силами Морской Арктической геологической экспедиции (МАГЭ) в 1986–1990 гг., Московской Лабораторией региональной геодинамики (ЛАРГЕ) в 1989 г. и совместной Российско-Германской экспедицией в 1993–1994 гг. Эти данные позволили проследить структуру рифтовой системы Хребта Гаккеля в осадочном чехле шельфа и разработать сейсмостратиграфическую схему для Моря Лаптевых и для северо-западной части Восточно-Сибирского моря. В шельфовой части этих морей не проводились измерения теплового потока, поэтому при моделировании геотермического поля вдоль профилей в шельфовой части Моря Лаптевых принимались фоновые значения теплового потока для Карского моря.

3. Термическое поле Амеразийского бассейна СЛО

В Северном Ледовитом океане на траверсе Моря Лаптевых и Восточно-Сибирского морей имеются измерения теплового потока, выполненные погружными термоградиентографами с дрейфующих льдов на Хребтах Гаккеля и Ломоносова, а также в Котловинах Подводников (более 40 измерений) (Любимова и др., 1973).

Перейти на страницу:

Все книги серии Вклад России в Международный полярный год 2007/08

Похожие книги

Россия подземная. Неизвестный мир у нас под ногами
Россия подземная. Неизвестный мир у нас под ногами

Если вас манит жажда открытий, извечно присущее человеку желание ступить на берег таинственного острова, где еще никто не бывал, увидеть своими глазами следы забытых древних культур или встретить невиданных животных, — отправляйтесь в таинственный и чудесный подземный мир Центральной России.Автор этой книги, профессиональный исследователь пещер и краевед Андрей Александрович Перепелицын, собравший уникальные сведения о «Мире Подземли», утверждает, что изучен этот «параллельный» мир лишь процентов на десять. Причем пещеры Кавказа и Пиренеев, где соревнуются спортсмены-спелеологи, нередко известны гораздо лучше, чем подмосковные или приокские подземелья — истинная «терра инкогнита», ждущая первооткрывателей.Научно-популярное издание.

Андрей Александрович Перепелицын , Андрей Перепелицын

География, путевые заметки / Геология и география / Научпоп / Образование и наука / Документальное