Читаем Строение и история развития литосферы полностью

Далее новая профильная аэромагнитная информация была увязана со старыми магнитометрическими материалами, накопленными в базе данных ВНИИОкеангеология. При этом взаимоувязанные профильные данные были пересчитаны в равномерную матрицу значений АМП (грид) с размерами ячейки 2,5×2,5 км по методу минимума кривизны поверхности (Smith, 1990). Именно этот грид и послужил основой для построения карты магнитных аномалий в области исследований 2007 г., а также карты АМП всего исследуемого региона, охватывающего зоны сочленения основных поднятий Амеразийского суббассейна с континентальным шельфом морей Лаптевых и Восточно-Сибирского (рис. 9).


Рис. 9. Фрагмент сводной карты аномального магнитного поля Северного Ледовитого океана в области его сочленения с шельфом Восточно-Арктических морей.


Средняя квадратичная погрешность сводной карты графиков АМП в районе съемки 2007 г. с учетом результатов предшествующих исследований составила ±4,6 нТл.

Интенсивность АМП на хребте Ломоносова в целом понижена. Генеральное простирание магнитных аномалий в целом подчиняется простиранию хребта, но упорядоченности поля не наблюдается. Амплитуда, ширина, а также градиенты аномалий существенно меняются как вкрест, так и вдоль поднятия. Структура магнитного поля в зоне сочленения хребта Ломоносова с прилегающим шельфом контролируется геодинамической обстановкой на его флангах. Со стороны котловины Амундсена наблюдаются высокоинтенсивные аномалии, типичные для участков пассивных окраин, где установлены проявления вулканизма. С противоположного фланга, граничащего с котловиной Подводников, а также с континентальным шельфом Восточно-Сибирского моря, наблюдается низкоамплитудное слабоградиентное поле без резких изменений структуры аномалий, что свойственно, в частности, внутриплатформенным осадочным бассейнам.

Средняя квадратичная погрешность аэрогравиметрической съемки после введения всех поправок и увязки маршрутов составила ±1.5 мГал.

Измеренное поле оказалось весьма изрезанным. Средний градиент поля составляет ≈0.7 мГал/км при максимальных значениях до 4 мГал/км. Сравнение полученного поля с гридом аномалий силы тяжести, созданным в рамках международного Арктического гравиметрического проекта АркГП (http://earth-infonima.mil/GrandG/wgs84/agp/index.html) показало его большую детальность и лучшую корреляцию с рельефом.

Результаты сопоставления показали высокую эффективность современных аэрогравиметрических исследований и позволили использовать обновленную модель поля силы тяжести в качестве наиболее достоверной информации при интерпретации.

Карта аномалий поля силы тяжести в редукции в свободном воздухе на всю площадь исследований, представленная на рис. 10, позволила выявить главные особенности гравитационного поля исследуемого региона, провести его районирование, а также уточнить конфигурацию отдельных аномалий и геоструктур. В частности, уточнена конфигурация краевой гравитационной аномалии, отделяющей глубоководную часть арктической акватории от шельфов морей Лаптевых и Восточно-Сибирского. Уточнены границы хребта Ломоносова – на новой карте он выражен отчетливой линейной морфоструктурой. При подходе к шельфу моря Лаптевых хребет распадается на два отрога. От котловин Амундсена и Подводников он отделен системой отрицательных линейных аномалий, которые, в соответствии с сейсмическими данными, связаны с прогибами.


Рис. 10. Фрагмент сводной карты аномалий силы тяжести в редукции в свободном воздухе Северного Ледовитого океана в области его сочленения с шельфом Восточно-Арктических морей.


На картах аномалий Буге, рассчитанных посредством 3-D гравитационного моделирования, хребет Ломоносова характеризуется пониженной интенсивностью по сравнению с прилегающими абиссальными котловинами. Наиболее контрастно в аномалиях Буге отмечаются границы блоков разного тектонического происхождения.

По результатам аэрогеофизических съемок 2007 года с привлечением данных по прилегающим акваториям Евразийского и Амеразийского суббассейнов были составлены схемы районирования и выполнено гравитационное моделирование вдоль осевой зоны площади аэрогеофизических исследований с опорой на сейсмические наблюдения МОВ и ГСЗ.

Плотности выделенных на сейсмическом разрезе слоев земной коры были определены по их скоростным характеристикам согласно эмпирической зависимости скорость-плотность (Красовский 1981; Nafe, Drake, 1967).

Моделирование проводилось по аномалиям поля силы тяжести, составленным из двух наборов данных – наледные гравиметрические измерения и результаты аэрогравиметрических исследований.

Положение глубинных сейсмических границ М и К1, определенных наиболее надежно методом ГСЗ, в плотностной модели осталось неизменным. В соответствии с коротковолновыми особенностями поля силы тяжести были выделены некоторые воздымания и опускания в рельефе акустического фундамента, не противоречащие сейсмическим данным.

Перейти на страницу:

Все книги серии Вклад России в Международный полярный год 2007/08

Похожие книги

Россия подземная. Неизвестный мир у нас под ногами
Россия подземная. Неизвестный мир у нас под ногами

Если вас манит жажда открытий, извечно присущее человеку желание ступить на берег таинственного острова, где еще никто не бывал, увидеть своими глазами следы забытых древних культур или встретить невиданных животных, — отправляйтесь в таинственный и чудесный подземный мир Центральной России.Автор этой книги, профессиональный исследователь пещер и краевед Андрей Александрович Перепелицын, собравший уникальные сведения о «Мире Подземли», утверждает, что изучен этот «параллельный» мир лишь процентов на десять. Причем пещеры Кавказа и Пиренеев, где соревнуются спортсмены-спелеологи, нередко известны гораздо лучше, чем подмосковные или приокские подземелья — истинная «терра инкогнита», ждущая первооткрывателей.Научно-популярное издание.

Андрей Александрович Перепелицын , Андрей Перепелицын

География, путевые заметки / Геология и география / Научпоп / Образование и наука / Документальное