Какие же общие выводы можно сделать из результатов физических исследований?
1. Мы не можем просто пренебречь явлениями или свойствами, которые выглядят взаимно противоречивыми, объявив их неверно установленными, мнимыми или неполными. Мы не можем достоверно знать, что такие явления сами по себе исключают друг друга.
2. Нам не следует отметать упомянутые явления как несущественные, тривиальные или нестоящие внимания. Их знание может оказаться решающим для человечества. Хотя никто не способен полностью понять, что такое свет или электрический ток, все же любой ребенок, повернув выключатель, может использовать оба явления полностью.
3. Возможности нашего логического мышления ограничены. Пока оно прилагается к разрешимым задачам или к наблюдаемым явлениям, его выводы можно легко проверить. Но когда оно занимается явлениями, познаваемыми лишь по их воздействию на измерительные приборы или по оставленным ими следам, мы больше не можем настаивать на требовании, чтобы его выводы были понятны и однозначны.
В наши дни всякий образованный человек знает кое-что из атомной физики о внутреннем строении вещества из атомов и молекул.
Но, зная эту теорию, мы не всегда способны осознать, что карандаш в руке, книга перед глазами, вещество отдельной буквы — все это сложено из бесчисленного множества атомов, частиц столь малых, что ряд из десяти миллионов атомов без промежутков прикроет лишь один миллиметр.
Если бы у нас было столько кирпичей, сколько атомов в одном кубическом сантиметре воздуха, мы могли бы покрыть ими всю земную поверхность на высоту 180 метров. Или будь у нас столько же атомов водорода, сколько капель воды во всех земных морях, то все вместе эти атомы весили бы лишь 50 граммов.
4. Каждый отдельный атом — это крохотное, хитрое устройство с положительно заряженным ядром в центре и отрицательными электронами, кружащимися по орбитам вокруг ядра. Диаметр атомного ядра водорода составляет около одной стотысячной всего атома. На рис. 10 изображен атом водорода с ядром, для наглядности увеличенный в тысячу раз относительно реальных пропорций атома. Следовательно, ядро и электроны занимают лишь малую часть атомного объема, а остальное — пустое пространство. Тут невольно напрашивается сравнение с солнечной системой: Солнце и планеты занимают ничтожную долю объема той части мирового пространства, где они движутся.
Рис. 10. Атом водорода состоит из ядра и одного электрона на орбите. На этом рисунке ядро увеличено в 1000 раз по сравнению с истинными пропорциями ядра и всего атома.
Планетарную модель атома первым предложил физик Эрнст Резерфорд. Он направил поток альфа-частиц (ядер гелия), испускаемых радиоактивным элементом радием, на металлическую фольгу толщиной в несколько сотых долей миллиметра. Оказалось, что большинство альфа-частиц прошло сквозь фольгу почти без помех — будто бы ее и не было. Только некоторые частицы, проходя фольгу, заметно отклонились.
Объяснением должно служить то, что эти отклонившиеся альфа-частицы столкнулись с небольшими массивными объектами — атомными ядрами. Прочие же, чьи траектории не показали значительных отклонений, могли столкнуться только с легкими электронами, отбрасывая их прочь своей в семь тысяч раз превосходящей массой.
Дальнейшие исследования показали, что атомные ядра отдельных элементов состоят из различных количеств элементарных частиц — протонов и нейтронов. С этого начались непрекращающиеся открытия новых элементарных частиц.
Все, что мы зовем материей,— предметы, с которыми мы сталкиваемся каждый день, столь твердые, массивные и плотные,— на деле, в основном, оказалось пустотой. Если вообразить, что из одного кубометра железа удалена вся пустота, то оно должно сжаться в кусок, объемом менее одной десятитысячной кубического миллиметра. Но поскольку масса атомов сосредоточена в ядрах, этот крошечный кубик будет весить около восьми тонн. Его плотность составит 140 биллионов г/см3
. Но и это меньше плотности нейтронной звезды (см. раздел «Космос»). Что касается нас самих, то немного осталось бы от наших тел, не будь они заполнены внутриатомным пространством,— разве только малая пылинка, еле видная под лупой.Изучая Вселенную, современные астрономы пользуются еще и радиоволнами, поступающими из космических источников, так называемым радиошумом. У него разные причины, среди которых возможны даже столкновения звездных систем (галактик).
Такие столкновения вовсе не ведут к соударению отдельных звезд. Галактики настолько просторны, что, сталкиваясь, проходят друг друга насквозь так, что отдельные звезды не задевают друг друга. Между звездами остаются промежутки во много световых лет.