Читаем Теорема Гёделя полностью

В исчислении могут использоваться и символы, не входящие в его исходный («основной») алфавит; такие символы вводятся посредством определений, записанных в терминах исходных (и вообще ранее определенных) символов. Например, в наше исчисление можно ввести новый символ (константу) «·», обозначающий союз «и», определив его таким образом, чтобы запись «p·q» воспринималась как сокращение записи «~(~p˅~q)». Какой гёделевский номер сопоставить введенному таким образом символу? Ответ станет совершенно очевидным, когда мы заметим, что из выражений, содержащих дополнительные (введенные определениями) символы, эти новые символы можно исключить, заменив их обозначаемыми ими выражениями, составленными исключительно из исходных символов (для этого мы просто читаем соответствующие определения «справа налево»); для последних же гёделевеcкие номера мы строить умеем. Поэтому нам достаточно условиться считать гёделевским номером формулы «p·

q» гёделевский номер эквивалентной ей формулы «~(~p˅~q)», гёделевским номером «формулы» «2 ≠ 3» — номер заменяемой ею «настоящей» формулы «~(ss0=sss0)» и т. п., условившись, конечно (что совсем нетрудно), об однозначном
порядке таких «расшифровок».


Рассмотрим, наконец, какую-нибудь последовательность формул (могущую быть в частном случае доказательством), например последовательность

Ǝ x (x = sy),

Ǝ x (x = s0).

Вторая формула последовательности, читаемая как «существует число, непосредственно следующее за нулем», — выводимая из первой формулы посредством подстановки цифры 0 вместо числовой переменной.


Читатель, конечно, помнит, что формальное доказательство мы определяли выше как конечную последовательность формул, каждая из которых есть либо аксиома, либо выводима из предыдущих формул этой последовательности по правилам вывода данного исчисления. Согласно этому определению приведенная пара формул доказательством не является (первая ее формула — не аксиома) — это лишь «кусок» доказательства, на примере которого мы столь же понятно (но далеко не так громоздко) поясним идею нумерации, как и на целом доказательстве.


Выше мы уже определили гёделевский номер первой из этих формул — мы обозначили его тогда через m. Пусть гёделевским номером второй формулы является число n. Как и выше, мы хотим сопоставить нашей последовательности не пару чисел m и n, а некоторое единственным образом определенное натуральное число. Для этого нам достаточно взять в качестве такого гёделевского номера число, являющееся произведением степеней первых двух простых чисел (т. е. чисел 2 и 3), причем первый сомножитель будет входить в это произведение в степени, показатель которой равен гёделевскому номеру первой формулы, и аналогично для второго сомножителя (а также для третьего и других, если мы имеем дело с последовательностью, состоящей более чем из двух формул). Обозначим это число через k: k = 2m × 3n. Такой простой и компактный метод применим, очевидно, для получения гёделевского номера произвольной последовательности формул. Таким образом, любое выражение нашей системы — будь то элементарный символ, последовательность символов или последовательность таких последовательностей — может быть однозначно занумеровано посредством некоторого гёделевского номера.

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное