Читаем Теорема Гёделя полностью

Первым шагом построения абсолютного доказательства непротиворечивости, согласно такому подходу, должна явиться полная формализация исследуемой дедуктивной системы, состоящей, грубо говоря, в том, что все входящие в данную, систему выражения рассматриваются как лишенные какого бы то ни было значения — просто как некоторые сочетания символов. Способы соединения символов и обращения с составленными из них выражениями четко предусмотрены специальными правилами. В результате мы получаем систему символов (называемую «исчислением»), содержащую все те и только те символы, на которые мы явным и недвусмысленным образом указали. Постулаты и теоремы полностью формализованной системы — просто «строчки» (т. е. конечные последовательности) ничего не означающих значков, достроенные из элементарных символов согласно правилам данной системы. В такой полностью формализованной системе вывод теорем из постулатов — не что иное, как преобразование (согласно правилам системы) одной совокупности «строчек» в другую. Поступая таким образом, мы избегаем опасности, связанной с неявным использованием каких-либо сомнительных методов рассуждения.

Формализация — дело довольно-таки трудное и требующее немалой изобретательности; но она хорошо служит намеченной задаче. Формализация позволяет ясно видеть структуру системы и назначение отдельных ее элементов аналогично тому, как структура и работа отдельных узлов какой-нибудь машины легче уясняются на модели такой машины, чем при рассмотрении самой машины. Логические соотношения между отдельными предложениями становятся после формализации хорошо обозримыми; мы видим в ней структурные соотношения между различными «строчками» и «бессмысленными» символами, уясняем, каким образом они связаны друг с другом, правила их комбинации и взаимного следования и т. п.

До сих пор мы говорили, что «бессмысленные» значки такой формализованной математики ничего не утверждают

— это пока просто некая абстрактная картинка, иллюстрирующая строение интересующей нас системы. Но, конечно, строение такой картинки — а тем самым и иллюстрируемой ею системы — мы можем описывать на обычном человеческом языке, делая определенные высказывания, относящиеся к ее общей конфигурации и соотношениям отдельных ее элементов.

Мы можем, например, отметить простоту или симметричность какой-нибудь «строчки», сходство ее с некоторой другой «строчкой» можем заметить, что одна «строчка» может быть представлена в виде сочленения трех других «строчек» и т. п. Такие высказывания, безусловно, осмыслены и, более того, могут выражать весьма существенную информацию о нашей формальной системе. Следует, однако, сразу же отметить, что все эти осмысленные высказывания о бессмысленной (или, что то же самое, — формализованной) математике никоим образом не принадлежат сами по себе этой математике. Они относятся к области, которую Гильберт назвал «метаматематикой», к языку, на котором говорят о математике. Метаматематические высказывания — это высказывания о символах, входящих в формализованную математическую систему (т. е. в исчисление), о видах символов, об их упорядочении внутри формальной системы, о способах составления из этих символов более длинных знакосочетаний («строчек»), которые естественно называть «формулами» системы, наконец, о соотношениях между формулами, в частности о том, какие формулы могут быть получены (по фиксированным нами правилам обращения с ними) в качестве «следствий» других формул.

Приведем несколько примеров, иллюстрирующих различие между математикой и метаматематикой. Скажем, выражение «2+3=5» принадлежит математике (арифметике) и строится исходя лишь из элементарных арифметических символов, в то время как высказывание «„2+3=5“ есть арифметическая формула» утверждает нечто об этом выражении. Оно само по себе не выражает никакого арифметического факта и не принадлежит формальному языку арифметики, а относится к метаматематике, характеризуя некоторую строчку, составленную из арифметических символов, как формулу.

Формулы

x = x,

0 = 0,

0 ≠ 0

Перейти на страницу:

Все книги серии НАУКУ — ВСЕМ! Шедевры научно-популярной литературы

Наблюдения и озарения или Как физики выявляют законы природы
Наблюдения и озарения или Как физики выявляют законы природы

Все мы знакомы с открытиями, ставшими заметными вехами на пути понимания человеком законов окружающего мира: начиная с догадки Архимеда о величине силы, действующей на погруженное в жидкость тело, и заканчивая новейшими теориями скрытых размерностей пространства-времени.Но как были сделаны эти открытия? Почему именно в свое время? Почему именно теми, кого мы сейчас считаем первооткрывателями? И что делать тому, кто хочет не только понять, как устроено все вокруг, но и узнать, каким путем человечество пришло к современной картине мира? Книга, которую вы держите в руках, поможет прикоснуться к тайне гениальных прозрений.Рассказы «Наблюдения и озарения, или Как физики выявляют законы природы» написаны человеком неравнодушным, любящим и знающим физику, искренне восхищающимся ее красотой. Поэтому книга не просто захватывает — она позволяет почувствовать себя посвященными в великую тайну. Вместе с автором вы будете восхищаться красотой мироздания и удивляться неожиданным озарениям, которые помогли эту красоту раскрыть.Первая часть книги, «От Аристотеля до Николы Теслы», расскажет о пути развития науки, начиная с утверждения Аристотеля «Природа не терпит пустоты» и эпициклов Птолемея, и до гелиоцентрической системы Коперника и Галилея и великих уравнений Максвелла. Читатель проделает этот огромный путь рука об руку с гениями, жившими задолго до нас.«От кванта до темной материи» — вторая часть книги. Она рассказывает о вещах, которые мы не можем увидеть, не можем понять с точки зрения обыденной, бытовой ЛОГИКИ' о принципе относительности, замедлении времени, квантовании энергии, принципе неопределенности, черных дырах и темной материи. История загадочной, сложной и увлекательной современной физики раскроется перед читателем.Итак, вперед — совершать открытия вместе с гениями!

Марк Ефимович Перельман , Марк Ефимович Перельман

Научная литература / Прочая научная литература / Образование и наука
Людвиг Больцман: Жизнь гения физики и трагедия творца
Людвиг Больцман: Жизнь гения физики и трагедия творца

В настоящей книге рассказывается о жизни и творчестве выдающегося австрийского физика Людвига Больцмана (1844-1906), автора классических исследований по молекулярно-кинетической теории вещества, статистической физике и термодинамике. Книга состоит из трех частей. Первая часть «Диалог», по существу, представляет собой небольшой исторический очерк о физике «добольцмановского» времени — от появления первых научных идей в Древней Греции и последующего развития физики вплоть до середины XIX века. Вторая часть «Монолог» посвящена описанию жизненного пути и творческой деятельности великого физика. Биографические главы перемежаются с анализом научных трудов Больцмана — от самых первых работ до творений, указывающих новые пути развития физики и составляющих фундамент современной науки. Здесь же описывается бескомпромиссная борьба Больцмана за признание справедливости атомного учения. Наконец, третья часть книги — «Триумф» — представляет собой рассказ о победе идей Больцмана, принесших бессмертие имени ученого, об их жизни и развитии в современной физике.Книга рассчитана на широкий круг читателей, интересующихся историей развития физики; может быть полезна студентам и аспирантам физико-математических вузов.

Олег Павлович Спиридонов

Биографии и Мемуары

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление
Размышления о думающих машинах. Тьюринг. Компьютерное исчисление

Алану Тьюрингу через 75 лет после сто смерти, в 2009 году, были принесены извинения от правительства Соединенного Королевства за то, как с ним обошлись при жизни. Ученого приговорили к принудительной химической терапии, повлекшей за собой необратимые физические изменения, из-за чего он покончил жизнь самоубийством в возрасте 41 года. Так прервался путь исследователя, признанного ключевой фигурой в развитии компьютеров, автора первой теоретической модели компьютера с центральным процессорным устройством, так называемой машины Тьюринга. Ученый принимал участие в создании первых компьютеров и использовал их для расшифровки нацистских секретных кодов, что спасло много жизней и приблизило конец войны. Такова, по сути, трагическая история гения, которого подтолкнула к смерти его собственная страна, хотя ей он посвятил всю свою жизнь.

авторов Коллектив

Математика / Научпоп / Образование и наука / Документальное