Что эти факты совместимы с евклидовой группой, легко убедиться: стоит только представить себе неизменяемым твердым телом нашей обычной геометрии, имеющим форму прямоугольного треугольника, а точки
Предположим теперь, что вместо предыдущих фактов мы наблюдали, что можно опять-таки наложить последовательно на
Вот опытные факты, которые можно было бы наблюдать, если бы неевклидова геометрия была правильна и если бы и
Итак, эти новые факты невозможны, раз тела движутся, следуя евклидовой группе; но они стали бы возможны, если бы допустить, что тела движутся подобно группе Лобачевского. Их было бы, следовательно, достаточно (если бы они наблюдались), чтобы убедиться, что рассматриваемые тела не движутся, следуя евклидовой группе.
Таким образом, не вводя никакой гипотезы о форме и природе пространства, об отношениях тел к пространству, не приписывая телам никакого геометрического свойства, я нашел факты, позволяющие мне показать, что доступные опытам тела в одном случае движутся, следуя структуре группы Евклида, в другом – следуя структуре группы Лобачевского.
Однако нельзя сказать, что первый ряд фактов может составить опыт, доказывающий, что пространство является евклидовым, а второй – опыт, доказывающий, что пространство неевклидово.
В самом деле, можно было бы представить себе тела, движущиеся таким образом, что они осуществляют второй ряд фактов. Доказательством служит то, что любой механик мог бы их построить, если бы он захотел взять на себя этот труд и если бы придавал этому значение. Однако из этого вы не заключили бы, что пространство неевклидово, тем более что обыкновенные твердые тела продолжали бы существовать и тогда, когда механик построил бы странные тела, упомянутые мною: так что пришлось бы даже заключить, что пространство является одновременно евклидовым и неевклидовым.
Предположим, например, что мы имеем большую сферу радиуса
Мы могли бы иметь тела, расширением которых можно было бы пренебречь и которые вели бы себя как обыкновенные неизменяемые твердые тела; с другой стороны, мы могли бы иметь тела очень растяжимые, которые вели бы себя как неевклидовы твердые тела. Мы могли бы иметь две двойные пирамиды
Тогда можно было бы обнаружить первый ряд фактов с двойной пирамидой
8. Добавление
. Для полноты мне следовало бы еще сказать о вопросе очень тонком, который потребовал бы подробного развития; я ограничусь здесь только резюмированием того, что я изложил в «Revue de M'etaphysique et de Morale» и в «The Monist». Что мы хотим сказать, когда говорим, что пространство имеет три измерения?Мы видели важность тех «внутренних изменений», которые нам открываются нашими мускульными ощущениями. Они могут служить для характеристики различных положений нашего тела. Возьмем за начальное одно из этих положений