Читаем Теоретические основы инвестиций в акции, облигации и стандартные опционы полностью

В — третьих, при относительно большом значении для определения достижимого множества целесообразно использовать численные методы, что обусловлено чрезмерно громоздкими конечными формулами, которые выводятся в рамках аналитической геометрии. Численные методы предполагают определение достижимого множества портфеля, например, путём последовательного перебора всех возможных сочетаний объёмов инвестирования в каждый актив при этом большое количество арифметических операций предопределяет необходимость использования вычислительной техники.

Методологически оправданным (от простого к сложному) является анализ специфики достижимых множеств портфелей как комбинации:

безрискового актива с рискованным активом;

двух рискованных активов;

трёх рискованных активов;

рискованных активов;

безрискового актива и рискованных активов;

рискованных активов и активов с фиксированной доходностью.

При анализе инвестиционных качеств перечисленных вариантов комбинаций активов будем полагать, что возможности инвестора ограничены собственным капиталом.

Достижимое множество портфелей, содержащих безрисковый актив и рискованный актив. На основании приведенных выше соотношений рассмотрим основные свойства портфеля, который состоит из безрискового актива и рискованного актива


где и — относительные объёмы инвестирования в безрисковый и рискованный активы соответственно; и — доходность и СКО доходности безрискового актива соответственно; и — МО и СКО доходности рискованного актива соответственно; — коэффициент корреляции доходностей безрискового и рискованного активов.

Поскольку в данном случае, СКО доходности безрискового актива равно нулю () по определению, а случайная и детерминированная величины всегда не коррелированны () получаем


После простых преобразований находим


Анализ соотношения (1.14) показывает, что зависимость МО доходности портфеля от СКО доходности является линейной (рис. 1.2). Параметр является свободным членом в данной линейной зависимости, а отношение является тангенсом угла наклона прямой.



Рис. 1.2. Достижимое множество портфелей, содержащих безрисковый и рискованный активы


Условия и ограничивают прямую линию отрезком прямой, который пересекает ось ординат в точке, соответствующей портфелю (,), и завершается точкой, соответствующей портфелю (,).

Таким образом, достижимое множество портфелей, содержащих безрисковый и рискованный активы, имеет вид отрезка прямой линии, соединяющей точки и, соответствующие безрисковому активу и рискованному активу. При этом конкретное расположение портфеля на отрезке прямой зависит от соотношения относительных объёмов инвестирования в безрисковый и рискованный активы.

Достижимое множество портфелей, содержащих два рискованных актива. Предположим, что портфель содержит два рискованных актива и. По аналогии с соотношениями (1.10) и (1.11) получаем


где и — относительные объёмы инвестирования в активы и соответственно; и — МО доходностей активов и соответственно; и — СКО доходностей активов и соответственно и; — коэффициент корреляции доходностей активов и.

Учитывая, что, из формулы (1.15) получаем соотношения для расчёта относительных объёмов инвестирования в активы и ()


После преобразований соотношений (1.15) и (1.16) получаем уравнение гиперболы вида


где — координата вершины гиперболы по оси ординат


— длина действительной полуоси гиперболы или координата вершины гиперболы по оси абсцисс;

— длина мнимой полуоси гиперболы.

В качестве примера на рис. 1.3 представлены достижимые множества портфелей, содержащих два рискованных актива и, для коэффициентов корреляции, и.



Рис. 1.3. Достижимые множества портфелей, содержащих два рискованных актива и, для коэффициентов корреляции, и (зависимости 1, 2 и 3 соответственно)


Условия и ограничивают гиперболу точками, которые соответствуют портфелям с одним активом (,) или (,).

Анализ рис. 1.3 показывает, что достижимое множество портфелей, содержащих два рискованных актива, при располагается на дуге гиперболы (кривая 1) и при — на дуге гиперболы (кривая 2).

Портфели, соответствующие вершинам гипербол и, обладают минимально возможными значениями СКО доходностей из достижимых множеств и соответственно, причём наименьшее СКО доходности имеет место при.

В частном случае, когда активы и представляют собой совокупности ценных бумаг одного и того же эмитента, но приобретённых по разной цене (по этой причине активы отличаются МО и СКО доходности), коэффициент корреляции доходностей активов равен единице, т. е. Тогда выражение для СКО доходности портфеля преобразуется к виду


и достижимое множество вырождается в отрезок прямой (на рис. 1.3 прямая 3). Уравнение отрезка прямой имеет вид


где — тангенс угла наклона прямой; — свободный член линейной зависимости.

Координаты вершины гиперболы и соответствующие объёмы инвестирования в активы и можно определить и методом выделения экстремума функции с использованием частных производных.

Перейти на страницу:

Похожие книги

Управление предприятием в условиях дефицита оборотных средств. Финансовое оздоровление предприятия
Управление предприятием в условиях дефицита оборотных средств. Финансовое оздоровление предприятия

Книга представляет собой практическое руководство по организации управления предприятием. Особое внимание уделено управлению в условиях дефицита оборотных средств. Указаны причины и следствия такого дефицита, а также мероприятия, позволяющие его устранить и не допустить в дальнейшем. Приведены методики оценки деятельности предприятия и управления основными финансовыми инструментами. Предназначается руководителям предприятий требующих финансового оздоровления, предприятий успешно действующим на рынке для недопущения возникновения кризисных ситуаций, начинающим и действующим предпринимателям, студентам и преподавателям институтов, а также всем, кто интересуется вопросами бизнеса. Может являться пособием по эффективному управлению деятельностью предприятий всех форм собственности.  

А. В. Кутепов , Алена Сергеевна Корчагина , Мария Сергеевна Клочкова

Финансы / Экономика / Управление, подбор персонала / Финансы и бизнес
Бизнес-ангелы. Как привлечь их деньги и опыт под реализацию своих бизнес-идей
Бизнес-ангелы. Как привлечь их деньги и опыт под реализацию своих бизнес-идей

Где взять деньги под создание нового перспективного бизнеса? Сколько стоит бизнес-идея и будет ли она работать? Эти и другие вопросы волнуют большое количество предпринимателей, нуждающихся в финансовой поддержке своих перспективных бизнес-планов. На помощь им могут прийти бизнес-ангелы.Бизнес-ангелы – это частные неформальные инвесторы, вкладывающие средства в малоизвестные молодые компании в ожидании роста их стоимости. Это состоятельные люди, обладающие не только финансовыми возможностями, но и колоссальным опытом по становлению и развитию собственного бизнеса. Привлечение капитала бизнес-ангелов является альтернативой стандартным формам инвестирования. Поднять до мирового уровня такие компании, как Apple, Body shop, Amazon, помогли в свое время именно их денежные средства.В книге в деталях описан процесс поиска и привлечения капитала бизнес-ангелов, особенности осуществления проектов с их участием. Приводятся лучшие методики организации сделок, создания команд и постановки бизнес-процессов в проинвестированных компаниях.Книга сопровождается комментариями экспертов Национального содружества бизнес-ангелов (СБАР) и других ведущих российских специалистов. Приводятся российские примеры бизнес-ангельского инвестирования.Издание будет полезно для предпринимателей на любой стадии развития бизнеса, а также самим бизнес-ангелам – действующим и потенциальным.

Брайан Хилл , Ди Пауэр

Финансы / Финансы и бизнес / Ценные бумаги