Читаем Теоретические основы инвестиций в акции, облигации и стандартные опционы полностью

Недопустимость подобного рода расчётов хорошо иллюстрируется простым примером. Предположим портфель содержит два актива А и В. Актив А был приобретён за 10 долл. и продан за 20 долл., а актив В — приобретён за 100 долл. и продан за 120 долл. (капитальные доходности активов соответственно равны и, относительные объёмы инвестирования — и. Согласно приведенным выше формулам получаем средневзвешенную и среднеарифметическую капитальную доходность


Результаты расчётов отличаются весьма существенно, что свидетельствует о недопустимости определения средней доходности (МО) портфеля активов без учёта их долей в стоимости портфеля.

Среднее квадратическое ожидание доходности портфеля активов. Если дисперсия дохода (стоимости) актива i—го вида равна, то дисперсия дохода портфеля, который содержит активов одного вида, составляет.

Дисперсия дохода портфеля, который содержит N видов активов, равна [1, 2]


где — коэффициент корреляции доходов (стоимости) активов i—го и j—го видов.

Формулу для расчёта дисперсии доходности портфеля можно преобразовать к виду


где и — средние квадратические отклонения доходности активов i—го и j—го видов соответственно.

Поскольку, а также при соответствующие коэффициенты корреляции равны единице () и, кроме того, и, получаем соотношение для СКО

доходности портфеля активов [2]


Неравенство под суммой означает, что суммирование распространяется на все возможные сочетания и при условии выполнения указанного неравенства. Количество сочетаний и во втором слагаемом выражения (1.9) составляет.

Теоретически коэффициент корреляции доходов активов может принимать значения в пределах от –1,0 до +1,0. Однако на практике не существует активов, которые имели бы отрицательную корреляцию с каким — либо другим активом [1, 5]. По этой причине в дальнейшем будем полагать.

Коэффициенты корреляции доходов (стоимости) активов i—го и j—го видов рассчитываются с использованием исторических данных по формуле [2]


где — количество торговых дней в выборке исторической стоимости активов; и — стоимости активов i—го и j—го видов соответственно в — ый торговый день; и — математические ожидания стоимостей активов

i—го и j—го видов соответственно.

Таким образом, с целью оптимизации структуры портфеля активов полученная совокупность соотношений позволяет оценить математическое ожидание и среднее квадратическое отклонение доходности портфеля активов. Матричная запись значений и позволяет использовать методы линейного программирования для оптимизации структуры портфеля активов [1, 3].


1.5. Достижимые множества портфелей

В портфельной теории решение задачи оптимизации структуры портфеля активов связано с понятием «достижимое множество портфелей», которое можно сформировать из ограниченного количества исходных активов [1]. В данном случае под активом понимается совокупность ценных бумаг одного эмитента, приобретённых по одинаковой цене, и, как следствие, все эти ценные бумаги обладают равными МО и СКО доходности, а их количество в активе зависит от суммы вложенных денежных средств.

Управление структурой портфеля в пределах достижимого множества осуществляется путём целенаправленного распределения капитала между активами. Поэтому достижимое множество является инструментом для выявления оптимальной структуры портфеля, что позволяет инвестору наиболее эффективно использовать ограниченные финансовые ресурсы.

Достижимое множество портфелей является областью определения МО доходности портфеля как функции СКО доходности, т. е. Данная зависимость задана уравнениями (1.8) и (1.9) и двумя условиями


Для анализа достижимых множеств портфелей воспользуемся, во — первых, методами аналитической геометрии, в соответствии с которой приведенные выше первые два уравнения в общем случае описывают кривую второго порядка, в частности гиперболу, заданную в параметрической форме. В некоторых случаях, как показано ниже, гипербола вырождается в точку или отрезок прямой.

Методы аналитической геометрии позволяют определить параметры гиперболы, а также обеспечивают возможность перехода описания достижимого множества портфелей от параметрической формы к более удобной аналитической форме представления зависимости.

Во — вторых, для определения минимального значения СКО доходности портфеля и соответствующих значений объёмов инвестирования воспользуемся известным в математическом анализе методом нахождения экстремума функции с использованием частных производных. В данном случае составляется система из уравнений, которые представляют собой приравненные к нулю частные производные функции


Решения данной системы уравнений относительно переменных с учётом условий и позволяют рассчитать границу достижимого множества и МО доходности портфеля с минимальным значением СКО доходности.

Перейти на страницу:

Похожие книги

Управление предприятием в условиях дефицита оборотных средств. Финансовое оздоровление предприятия
Управление предприятием в условиях дефицита оборотных средств. Финансовое оздоровление предприятия

Книга представляет собой практическое руководство по организации управления предприятием. Особое внимание уделено управлению в условиях дефицита оборотных средств. Указаны причины и следствия такого дефицита, а также мероприятия, позволяющие его устранить и не допустить в дальнейшем. Приведены методики оценки деятельности предприятия и управления основными финансовыми инструментами. Предназначается руководителям предприятий требующих финансового оздоровления, предприятий успешно действующим на рынке для недопущения возникновения кризисных ситуаций, начинающим и действующим предпринимателям, студентам и преподавателям институтов, а также всем, кто интересуется вопросами бизнеса. Может являться пособием по эффективному управлению деятельностью предприятий всех форм собственности.  

А. В. Кутепов , Алена Сергеевна Корчагина , Мария Сергеевна Клочкова

Финансы / Экономика / Управление, подбор персонала / Финансы и бизнес
Бизнес-ангелы. Как привлечь их деньги и опыт под реализацию своих бизнес-идей
Бизнес-ангелы. Как привлечь их деньги и опыт под реализацию своих бизнес-идей

Где взять деньги под создание нового перспективного бизнеса? Сколько стоит бизнес-идея и будет ли она работать? Эти и другие вопросы волнуют большое количество предпринимателей, нуждающихся в финансовой поддержке своих перспективных бизнес-планов. На помощь им могут прийти бизнес-ангелы.Бизнес-ангелы – это частные неформальные инвесторы, вкладывающие средства в малоизвестные молодые компании в ожидании роста их стоимости. Это состоятельные люди, обладающие не только финансовыми возможностями, но и колоссальным опытом по становлению и развитию собственного бизнеса. Привлечение капитала бизнес-ангелов является альтернативой стандартным формам инвестирования. Поднять до мирового уровня такие компании, как Apple, Body shop, Amazon, помогли в свое время именно их денежные средства.В книге в деталях описан процесс поиска и привлечения капитала бизнес-ангелов, особенности осуществления проектов с их участием. Приводятся лучшие методики организации сделок, создания команд и постановки бизнес-процессов в проинвестированных компаниях.Книга сопровождается комментариями экспертов Национального содружества бизнес-ангелов (СБАР) и других ведущих российских специалистов. Приводятся российские примеры бизнес-ангельского инвестирования.Издание будет полезно для предпринимателей на любой стадии развития бизнеса, а также самим бизнес-ангелам – действующим и потенциальным.

Брайан Хилл , Ди Пауэр

Финансы / Финансы и бизнес / Ценные бумаги