Читаем Теория относительности — мистификация ХХ века полностью

Классическая физика считает такую картину мира вполне перспективной, однако изучать движение вещества в абсолютном пространстве (в абсолютной системе отсчета) практически невозможно. Поэтому еще Ньютон считал необходимым выделять для практических целей из абсолютного пространства некоторую ограниченную, подвижную часть ([6], с. 30), «которая определяется нашими чувствами по положению его относительно некоторых тел и которое в обыденной жизни принимается за пространство неподвижное». В качестве предметов, определяющих относительное пространство, естественно выбирать тела с наибольшей массой, собственное движение которых относительно общего центра тяжести рассматриваемых предметов пренебрежимо мало.

Про характерные свойства относительного пространства Ньютон писал ([6], с. 49):

— «Относительные движения друг по отношению к другу тел, заключенных в каком-либо пространстве, одинаковы, покоится ли это пространство, или движется равномерно и прямолинейно без вращения»;

— «Если несколько тел, движущихся как бы то ни было друг относительно друга, будут подвержены действию равноускоряющих сил, направленным по параллельным между собою прямым, то эти тела будут продолжать двигаться друг относительно друга так же, как если бы сказанные силы на них не действовали».

За 200 лет до Циолковского Ньютон предвидел в этом утверждении явление невесомости, всегда сопутствующее свободному космическому полету!

Дальнейшее развитие классической теории относительности, берущей начало от Галилея, можно видеть в трудах Ньютона, Лапласа, Лагранжа, И. В. Мещерского и др. Этому развитию особенно способствовала замена понятия «относительное пространство» на «систему координат». Однако, переоценка значения этой системы иногда приводит к не менее вредным ошибкам, чем ее недооценка: часто забывают, что все координаты существуют только в нашем воображении или на бумаге. С их помощью можно описывать пространственные свойства реальных тел, их взаимное расположение и перемещение, но это не значит, что они физически связаны с этой системой, что, перемещая ее начало, поворачивая ее оси, меняя масштаб или придавая ей ту или иную скорость, мы можем влиять на взаимное расположение, физические размеры или элементы движения реальных тел. Система координат — не более, чем каркас, шаблон или масштаб, приложенный в воображении к изделиям природы для их изучения, но никак с ними не связанная.

Мысленно мы можем создавать любые системы координат. Удачный их выбор может значительно упростить математические выражения, которыми мы описываем предметы и процессы, но управлять ими через преобразование координат, как это думают релятивисты, мы не можем. Эйнштейн, например, прямо писал ([3], с. 425): «Гравитационное поле можно создать простым изменением координатной системы». Классическая физика это категорически отрицает: ведь такое «поле» останется только на бумаге, в виде математических символов, а в природе его не появится только от того, что вместо одних формул мы напишем другие!

Координатная система не имеет массы, вещества. Причинная же связь объективных явлений может осуществляться только со столь же объективными телами и явлениями. Непонимание этого простого закона является одной из наиболее ключевых ошибок релятивизма.

Законы, выраженные в разных координатных системах, не всегда оказываются универсальными: их математическое выражение может сильно меняться в зависимости от выбранной системы координат. Так, например, аналитическое описание эллипса в разных системах различно, но его реальные свойства и параметры (площадь, периметр, эксцентриситет) остаются неизменными. Для проверки объективности закона в этом случае пользуются способом преобразования координат: если, после определенных преобразований, в новой системе математическое выражение данного закона по существу не изменится, такой закон может считаться универсальным в пределах данного типа преобразований, а соответствующие уравнения называются «ковариантными».

Наиболее простая группа преобразований носит имя Галилея. Она относится к случаю параллельного перемещения координатных осей с постоянной скоростью v и излагается во всех курсах аналитической геометрии. Для случая перемещения только вдоль оси Ox имеем:

Эти равенства и носят название преобразований Галилея и лишь в XX веке к ним стали добавлять четвертое равенство


в связи с тем, что релятивисты не считают это равенство само собой разумеющимся, что кстати лишает время объективности, а явления — причинности.

В качестве примера применим это преобразование к распространению света в мировом пространстве. Допустим, что в какой-то точке О

произошла вспышка и свет от нее начал распространяться во все стороны с одинаковой скоростью с относительно источника. Через t секунд свет достиг точки K на расстоянии r от места вспышки О. Рассматривая все явления относительно этого последнего положения, напишем следующее уравнение:

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии / История