Читаем Теория относительности — мистификация ХХ века полностью

Совершенно такое же уравнение может быть написано и относительно другой системы координат O/x/y/z/ движущейся относительно первой вдоль оси Ox с постоянной скоростью v:

Оба уравнения равноправны, так как описывают одно и то же явление в одном и том же пространстве. Поэтому они должны быть совместимы. Подставляя в уравнение (4) формулы преобразования Галилея (1) и (2) и решая его совместно с (3) относительно скорости света в «штрихованной» системе, получим основное выражение классической теории относительности;



где

угол между векторами c и v.

Равенство (5) есть ни что иное, как известная формула векторного сложения скоростей, утверждающее, что скорость света складывается с любой другой скоростью, участвующей в рассмотрении, по общим правилам механики Ньютона. Как и скорость любых других тел, она зависит от выбора координатной системы, относительно которой мы ее измеряем, и от движения источника в этой системе.

Но ничто, кроме здравого смысла, не мешает нам предположить, что скорость света относительно любой системы координат всегда одна и та же и не зависит ни от ее движения, ни от движения источника в ней. Это предположение выражается постулатом Лоренца, согласованным с его теорией строения вещества, но и для нее необязательным:

Формулы (6) принадлежат к группе преобразования, названной именем Лоренца. Релятивисты считают ее единственно правильной и ссылаются при этом на то, что только она будто бы приводит к единству законов электродинамики движущихся и неподвижных тел. Это не так, как будет показано ниже.

Здесь же мы хотим еще раз подчеркнуть, что все преобразования координат (систем отсчета) производятся в одном и том же трехмерном пространстве, в котором существуют и движутся и те предметы, которые мы изучаем, и мы сами. Никакого другого пространства в мире нет. В связи с этим овеществление координат, проповедуемое релятивистами, неизбежно приводит к излюбленной теме многих фантастических романов: к множеству миров, совпадающих по трем измерениям, но смещенных относительно друг друга в четвертом измерении. Только так можно истолковать и следующие выражения из широко распространенной книги В. А. Угарова «Специальная теория относительности» [7], хотя это и не роман:

1) «Приборы, установленные в разных системах отсчета, дадут различные результаты…» (с. 18), вместо: «Приборы дадут различные результаты в зависимости от примененной в них системы отсчета, для которой они градуированы».

2) «Однако, во всякой системе отсчета, движущейся ускоренно относительно любой инерциальной системы координат… будут обнаруживаться отклонения от законов Ньютона» (стр. 23), вместо: «Если координатная система движется ускоренно, то приборы будут отмечать и это ускорение в полном соответствии с законами Ньютона».

3) «Возьмем в каждой из систем отсчета K и K/ по линейке одинаковой длины… Вопрос заключается в том, какую длину линейки В/С/ измерит наблюдатель из системы K и какую длину линейки

ВС измерит наблюдатель из K/» (стр. 45).

В классической физике такой вопрос вообще не может возникнуть: реальные линейки не меняют своей длины в зависимости от того, кто и откуда на них смотрит. Но, с точки зрения Угарова, это не только возможно, но и обязательно!

И сам Эйнштейн писал ([3], с. 187), что «вопрос о том, реально Лоренцево сокращение или нет, не имеет смысла: сокращение не является реальным для наблюдателя, движущегося вместе с телом, однако оно реально, так как оно может быть доказано физическими средствами для наблюдателя, не движущегося вместе с телом».

Не напрягайтесь, читатель, в мысленном эксперименте, так как придется согласиться с Эйнштейном в главном: здесь действительно смысла нет.


Теория относительности Эйнштейна, опирающаяся на преобразование Лоренца, возлагает вину за то, что уравнения Максвелла не охватывают область высоких скоростей, не на автора этой теории, а на формулы преобразования Галилея, предложенные свыше 300 лет тому назад и прочно вошедшие во все труды по аналитической геометрии.

Однако преобразования Лоренца являются такими же произвольными, как и постулат Эйнштейна о независимости скорости света от движения источника. Канонизация же II постулата Эйнштейна в физике привела к повсеместному отрицанию любого утверждения, противоречащего ему.

Приведем один из наиболее простых примеров использования этого приема, заимствованный, из книги М. Боулера «Гравитация и относительность» [8]:

«Рассмотрим… электрическое поле плоской волны:

Ее фаза равна j = k x — w t, а фазовая скорость есть:

<…>Фаза должна быть инвариантом, и на этом основании можно определить, что происходит с k, w при преобразовании Галилея, то есть связать между собой значения длины волны и частоты, воспринимаемые одним наблюдателем и другим, движущимся относительно первого. Поскольку фаза инвариантна во всех точках и в любые моменты времени, должно выполняться равенство

Подставив сюда x/ и t/, выраженные через x и t на основе преобразования Галилея, получим

откуда

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии / История