Читаем Теория струн и скрытые измерения Вселенной полностью

Здесь вас может ждать ловушка: без метрики невозможно получить массу, а без массы невозможно узнать, насколько близка имеющаяся модель к Стандартной модели. Но существуют несколько математических методов, а именно численные методы, реализуемые с помощью компьютера, которые можно использовать для приближенного вычисления метрики. Затем возникает вопрос, достаточно ли хороша использованная аппроксимация для получения приемлемого ответа.

В настоящее время применяют два основных метода, и оба в некоторой степени опираются на гипотезу Калаби. Эта гипотеза гласит (как уже отмечалось неоднократно), что если многообразие удовлетворяет определенным топологическим условиям, то оно обладает риччи-плоской метрикой. Не создав саму метрику, я не мог бы доказать, что такая метрика существует. При доказательстве был применен так называемый аргумент деформации, это означает, что если начать с чего-то, скажем, с некой метрики, и деформировать ее определенным образом, то этот процесс в конце концов сойдется к необходимой метрике. Если вы можете доказать, что такой процесс деформации стремится к нужному решению, то существует хороший шанс, что можно найти численную модель, которая также будет сходиться.

Недавно два физика, Мэтт Хедрик из Университета Брандейса и Тоби Вайсман из Королевского колледжа, произвели численные расчеты в соответствии с этими принципами, разработав аппроксимированную метрику для поверхности K3, четырехмерного многообразия Калаби-Яу, с которым мы часто имеем дело. Они использовали общую стратегию под названием дискретизация

, заключающуюся в том, чтобы взять объект с бесконечным числом точек, например точки, составляющие непрерывную кривую, и представить ее конечным (дискретным) числом точек, надеясь, что этот процесс, в конце концов, сойдется непосредственно на этой кривой. Хедрик и Вайсман считают, что этот процесс сходится, и хотя полученные ими результаты выглядят обнадеживающе, пока они не смогли доказать наличие сходимости.

Один из недостатков описанного метода, не имеющий отношения к анализу Хедрика и Вайсмана, связан с ограничениями современной техники: нынешним компьютерам просто не хватает мощности, чтобы рассчитать подробную метрику для шестимерных многообразий Калаби-Яу. Вычисление в шести измерениях требуют неимоверно больше операций, чем решение четырехмерной задачи. Несомненно, компьютеры продолжают совершенствоваться, и, возможно, они вскоре станут достаточно мощными, чтобы выполнять вычисления и для шести измерений.

Между тем, существует другой метод, который меньше зависит от вычислительных ограничений. Его начало было положено еще в 1980-е годы, когда я предположил, что риччи-плоскую метрику всегда можно аппроксимировать, поместив (или, говоря техническим языком, – «вложив») многообразие Калаби-Яу в опорное пространство очень высокой размерности. Такое опорное пространство называется

проективным пространством, и оно напоминает комплексный вариант плоского евклидова пространства, за исключением того, что оно компактно. При размещении, например, многообразия в большем пространстве, подпространство автоматически наследует метрику (которая называется индуцированной метрикой)
из опорного пространства. Аналогичная ситуация наблюдается, если поместить сферу в обычное евклидово пространство – сфера примет метрику опорного пространства. Если следовать похожей аналогии, то можно также считать, что дырка в швейцарском сыре встроена в более крупное пространство.

Рис. 9.5.С помощью процесса дискретизацииможно аппроксимировать одномерную кривую и двухмерную поверхность конечным числом точек. Такая аппроксимация, естественно, будет точнее при увеличении количества точек

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука