Читаем Теория струн и скрытые измерения Вселенной полностью

Если мы знаем, как измерить расстояние в более крупном пространстве (большом сыре), то мы также будем знать, как измерить размер дырки. В этом смысле вложенное пространство, или дыра, наследует метрику из «сырного» опорного пространства, в котором она находится. В 1950-е годы Джон Нэш доказал, что если поместить римановы многообразия в пространство с достаточно большим количеством измерений, то можно получить любую желаемую индуцированную метрику. Но теорема Нэша о вложении, являющаяся одной из самых великих работ этого знаменитого математика, применима к действительным многообразиям, помещенным в действительное пространство. В общем случае, комплексный вариант теоремы Нэша неверен. Но я считал, что комплексная версия этой теоремы может быть верной при определенных обстоятельствах. Например, я аргументировал, что большой класс кэлеровых многообразий может быть вложен в проективное пространство высокой размерности таким образом, что индуцированная метрика будет сколь угодно близка к исходной метрике при условии, что индуцированная метрика соответствующим образом масштабирована или «нормализована», то есть все ее векторы умножены на константу. Будучи специальным случаем кэлеровых многообразий, многообразия Калаби-Яу с риччи-плоской метрикой удовлетворяют этому топологическому условию. Это означает, что можно всегда индуцировать риччи-плоскую метрику, и ее можно всегда аппроксимировать путем вложения многообразия в опорное или проективное пространство со значительно большей размерностью.

Рис. 9.6.

В геометрии часто говорят о «вложении» объекта или пространства в «опорное пространство» высокой размерности. В данном случае мы вложили квадрат, то есть одномерный объект, поскольку он состоит из изогнутого несколько раз отрезка прямой, в двухмерное опорное пространство – сферу

Ганг Тиан, будучи в то время моим аспирантом, доказал это в статье, вышедшей в 1990 году, которая фактически была его диссертационной работой. С тех пор к моему исходному утверждению было добавлено несколько важных уточнений, включая диссертацию еще одного моего аспиранта Вей-Донг Руана о том, что возможна более точная аппроксимация риччи-плоской метрики. Главное уточнение было посвящено способу вложения многообразия Калаби-Яу в опорное пространство. Нельзя сделать это бессистемно. Идея состоит в том, чтобы выбрать соответствующее вложение так, чтобы индуцированная метрика была наиболее близка к риччи-плоской метрике. Для этого следует поместить многообразие Калаби-Яу на возможно лучшее место, так называемую сбалансированную позицию, которая является той позицией среди всех возможных, где наследуемая метрика приближается вплотную к риччи-плоской.

Понятие сбалансированной позиции ввели в 1982 году Петер Ли и я для случая подмногообразия (или подповерхностей) на сфере, находящейся в действительном пространстве. Затем мы пошли дальше – к общему случаю подмногообразия в сложном опорном (или проективном) пространстве со множеством измерений. В те годы Жан-Пьер Бургиньон, являющийся в настоящее время директором Института высших научных исследований, начал с нами сотрудничество, которое вылилось в 1994 году в совместную статью по этой теме.

Ранее на конференции по геометрии в Калифорнийском университете в Лос-Анджелесе я предположил, что каждое кэлерово многообразие, допускающее риччи-плоскую метрику, включая Калаби-Яу, является устойчивым, но такое понятие устойчивости

сложно определить. На последующих семинарах по геометрии я продолжал подчеркивать важность работы Бургиньона-Ли-Яу, как теперь ее называют, в отношении идеи устойчивости. Наконец, несколько лет спустя мой аспирант Вей Луо из Массачусетского технологического института установил связь между устойчивостью Калаби-Яу и условием равновесия. Благодаря работе Луо я смог видоизменить свою гипотезу, придя к заключению, что если вложить Калаби-Яу в многомерное пространство, то можно всегда найти положение, в котором позиция будет равновесной.

Саймон Дональдсон доказал, что эта гипотеза является верной. Его доказательство также подтвердило суть этой новой схемы аппроксимации: если вложить Калаби-Яу в высокоразмерное опорное пространство и выполнить условие равновесия, то метрика будет значительно ближе к риччи-плоской. Дональдсон доказал это, показав, что индуцированные метрики образуют последовательность в опорных пространствах увеличивающейся размерности и что эта последовательность сходится, стремясь к идеальной риччи-плоской метрике при стремлении числа измерений к бесконечности. Однако это заявление справедливо лишь постольку, поскольку верна гипотеза Калаби: когда Дональдсон продемонстрировал, что эта метрика сходится к риччи-плоской метрике, его доказательство опиралось на существование риччи-плоской метрики.

Перейти на страницу:

Похожие книги

История инженерной деятельности
История инженерной деятельности

В. В. Морозов, В. И. НиколаенкоИСТОРИЯ ИНЖЕНЕРНОЙ ДЕЯТЕЛЬНОСТИМинистерство образования и науки УкраиныНациональный технический университет«Харьковский политехнический институт»Курс лекций для студентов всех специальностей дневного и заочного обученияУТВЕРЖДЕНО редакционно-издательским советом университетаХарьков 2007В учебном пособии анализируется содержание инженерной деятельности, рассматривается развитие с древнейших времен для нашего времени.Пособие предназначено для студентов дневной и заочной форм обучения, а также всех, кто интересуется историей развития техники.Історія інженерної діяльності.Курс лекцій для студентів усіх спеціальностей денного та заочного форм навчання – В.В.Морозов, В.І.Ніколаєнко – Харків: НТУ "ХПІ", 2007. – 336 с. – Рос.мовою.В учбовому посібнику аналізується зміст інженерної діяльності, розглядається розвиток техніки з найдавніших часів до сучасності.Посібник призначено для студентів денної та заочної форм навчання, а також для усіх, хто цікавиться історією розвитку техніки.© В.В.Морозов, В.І.Ніколаєнко, 2007 р.

В. В. Морозов , В. И. Николаенко , Виталий Иванович Николаенко , Михаил Давыдович Аптекарь , Султан Курбанович Рамазанов

Технические науки / Учебники и пособия ВУЗов / Образование и наука
Чудо-оружие СССР. Тайны советского оружия
Чудо-оружие СССР. Тайны советского оружия

В XX веке в нашей стране в обстановке строжайшей секретности были созданы уникальные системы вооружения, действие которых иной раз более впечатляло, чем фантастические романы того времени. О некоторых из них и пойдет речь в этой книге. Автор не счел нужным что-либо преувеличивать или недоговаривать. В книге объективно представлены все достоинства, недостатки и перспективы возможного применения того или иного типа оружия. Читатель узнает, как маршал Тухачевский готовился к «войне роботов», как и почему взлетели на воздух дома на Крещатике в сентябре 1941 г., об испытаниях самолета-невидимки и его связи с Филадельфийским экспериментом, об атомных и ракетных секретах Лаврентия и Серго Берия, о работах по созданию флота из летающих лодок с атомными двигателями, способных доставить термоядерные заряды в любую точку земного шара, и о многом другом.

Александр Борисович Широкорад

История / Технические науки / Образование и наука