Читаем Тестовый контроль в образовании полностью

Иногда исследователи применяют численные методы удаления выбросов. К сожалению, в общем случае определение выбросов субъективно, и решение должно приниматься индивидуально в каждом эксперименте с учетом его особенностей или сложившейся практики в данной области. Во многих случаях первый шаг анализа состоит в вычислении корреляционной матрицы всех переменных и проверке значимых (ожидаемых и неожиданных) корреляций. После того как это сделано, следует понять общую природу обнаруженной статистической значимости и понять, почему одни коэффициенты корреляции значимы, а другие нет. Однако следует иметь в виду, если используется несколько критериев, значимые результаты могут появляться часто, и это будет происходить чисто случайным образом. Например, коэффициент, значимый на уровне 0,05, будет встречаться чисто случайно один раз в каждом из 20 подвергнутых исследованию коэффициентов. Поэтому следует подходить с осторожностью ко всем непредсказанным или заранее не запланированным результатам и погштаться соотнести их с другими (надежными) результатами. В конечном счете самый убедительный способ проверки состоит в проведении повторного экспериментального исследования. Такое положение является общим для всех методов анализа, использующих множественные сравнения и статистическую значимость.

Следует иметь в виду, что коэффициенты корреляции не являются аддитивными: усредненный коэффициент корреляции, вычисленный по нескольким выборкам, не совпадает со средней корреляцией во всех этих выборках. Причина в том, что коэффициент корреляции не является линейной функцией величины зависимости между переменными. Коэффициенты корреляции не могут быть просто усреднены. Для получения среднего коэффициента корреляции следует преобразовать коэффициенты корреляции каждой выборки в такую меру зависимости, которая будет аддитивной. Например, до того как усреднить коэффициенты корреляции, их можно возвести в квадрат, получить коэффициенты детерминации, которые уже будут аддитивными. Если необходимо выявить различия средних в нескольких исследуемых группах, то подходящим является однофакторный дисперсионный анализ, дающий различие дисперсий. Дисперсионный анализ – это статистический метод изучения влияния отдельных переменных на изменчивость измеряемой (исследуемой) переменной.

Апостериорные сравнения средних после получения статистически значимого результата в дисперсионном анализе позволяют узнать, какие средние вызвали наблюдаемый эффект. Процедуры апостериорного сравнения специально рассчитаны так, чтобы учитывать более двух выборок. Группировку с дискриминант–ным анализом можно рассматривать как первый шаг к другому типу анализа – дискриминативному, который исследует различия между группами с помощью значений независимой переменной. Именно, в дискриминантном анализе находят такие линейные комбинации зависимых переменных, которые наилучшим образом определяют принадлежность наблюдения к определенному классу, причем число классов задается заранее.

Дискриминантный анализ используется для принятия решения о том, какие переменные различают (дискриминируют) две или более возникающие совокупности (группы). Например, некий исследователь в области образования может захотеть исследовать, какие переменные относят выпускника средней школы к одной из трех категорий: 1) поступающий в колледж; 2) поступающий в профессиональную школу; 3) отказывающийся от дальнейшего образования или профессиональной подготовки. Для этой цели исследователь может собрать данные о различных переменных, связанных с учащимися школы. После выпуска большинство учащихся, естественно, должны попасть в одну из названных категорий. Затем можно использовать дискриминантный анализ для определения того, какие переменные дают наилучшее предсказание выбора учащимися дальнейшего пути. Например, предположим, что имеются две совокупности выпускников средней школы – те, кто выбрал поступление в колледж, и те, кто не собирается это делать. Если средние для двух совокупностей (тех, кто в настоящее время собирается продолжить образование, и тех, кто отказывается) различны, то это позволяет разделить учащихся на тех, кто собирается и кто не собирается поступать в колледж (и эта информация может быть использована членами школьного совета для подходящего руководства соответствующими учащимися).

Дисперсионный анализ, в частности, позволяет выявить, являются ли две или более совокупности значимо отличающимися одна от другой по среднему значению какой–либо конкретной переменной. Для изучения вопроса о том, как можно проверить статистическую значимость отличия в среднем между различными совокупностями, должно быть ясно, что если среднее значение определенной переменной значимо различно для двух совокупностей, то переменная их разделяет.

Перейти на страницу:

Похожие книги

Биология добра и зла. Как наука объясняет наши поступки
Биология добра и зла. Как наука объясняет наши поступки

Как говорит знаменитый приматолог и нейробиолог Роберт Сапольски, если вы хотите понять поведение человека и природу хорошего или плохого поступка, вам придется разобраться буквально во всем – и в том, что происходило за секунду до него, и в том, что было миллионы лет назад. В книге автор поэтапно – можно сказать, в хронологическом разрезе – и очень подробно рассматривает огромное количество факторов, влияющих на наше поведение. Как работает наш мозг? За что отвечает миндалина, а за что нам стоит благодарить лобную кору? Что «ненавидит» островок? Почему у лондонских таксистов увеличен гиппокамп? Как связаны длины указательного и безымянного пальцев и количество внутриутробного тестостерона? Чем с точки зрения нейробиологии подростки отличаются от детей и взрослых? Бывают ли «чистые» альтруисты? В чем разница между прощением и примирением? Существует ли свобода воли? Как сложные социальные связи влияют на наше поведение и принятие решений? И это лишь малая часть вопросов, рассматриваемых в масштабной работе известного ученого.

Роберт Сапольски

Научная литература / Биология / Образование и наука
Слово о полку Игореве
Слово о полку Игореве

Исследование выдающегося историка Древней Руси А. А. Зимина содержит оригинальную, отличную от общепризнанной, концепцию происхождения и времени создания «Слова о полку Игореве». В книге содержится ценный материал о соотношении текста «Слова» с русскими летописями, историческими повестями XV–XVI вв., неординарные решения ряда проблем «слововедения», а также обстоятельный обзор оценок «Слова» в русской и зарубежной науке XIX–XX вв.Не ознакомившись в полной мере с аргументацией А. А. Зимина, несомненно самого основательного из числа «скептиков», мы не можем продолжать изучение «Слова», в частности проблем его атрибуции и времени создания.Книга рассчитана не только на специалистов по древнерусской литературе, но и на всех, интересующихся спорными проблемами возникновения «Слова».

Александр Александрович Зимин

Литературоведение / Научная литература / Древнерусская литература / Прочая старинная литература / Прочая научная литература / Древние книги